

 1

Contents

*About keyestudio ... 3

*References and After-sales Service .. 3

*Warning ... 3

*Copyright .. 4

Mini Tank Robot V3 ... 4

1. Introduction .. 5

2.Features： ... 6

3.Parameters： .. 6

4. Kit List .. 7

5. Installation .. 14

6.Install Arduino IDE and Driver ... 57

(1) Installing Arduino IDE ... 57

(2) Keyestudio V4.0 Development Board .. 59

(3) Installing the Driver of the V4.0 Board .. 62

(4) Arduino IDE Setting ... 68

(5) Start First Program ... 72

7. How to Add a Library? .. 76

(1) What are Libraries ? ... 76

(2) How to Install a Library ? ... 77

8. Projects .. 79

Project 1: LED Blinks .. 80

 2

Project 2: Adjust LED Brightness ... 86

Project 3: Photoresistor .. 95

Project 4: Line Tracking Sensor .. 103

Project 5: Flame Sensor .. 111

Project 6: Fan .. 118

Project 7: Servo Control .. 125

Project 8: Ultrasonic Sensor .. 133

Project 9: IR Reception .. 144

Project 10: Bluetooth Remote Control ... 154

Project 11: Motor Driving and Speed Control .. 168

Project 12: 8*16 Facial Expression LED Dot Matrix 182

Project 13: Light-following Tank .. 202

Project 14: Ultrasonic Sound-following Tank .. 210

Project 15: Ultrasonic Obstacle Avoidance Tank 219

Project 16: Move-in-Confined-Space Tank .. 231

Project 17:Line-tracking Tank ... 239

Project 18: Fire Extinguishing Tank ... 250

Project 19: IR Remote Control Tank .. 261

Project 20: Bluetooth Control Tank ... 275

Project 21: Speed-Controlled-by-Bluetooth Tank.................................... 299

Project 22: Multifunctional Tank .. 313

9. Resources .. 347

 3

*About keyestudio

Keyestudio is a best-selling brand owned by KEYES Corporation. Our

product lines range from controller boards, shields and sensor modules to

smart cars and complete starter kits for Arduino, Raspberry Pi and BBC

micro:bit, which can help customers at any level learn electronics and

programming knowledge. Furthermore, all of our products comply with

international quality standards and are greatly appreciated in a variety of

different markets worldwide.

You can obtain the details and the latest information through the following

web site: http://www.keyestudio.com

*References and After-sales Service

1. Download Profile：https://fs.keyestudio.com/KS0526

2. If you find any parts missing or encounter any troubles, please feel free

to contact us: service@keyestudio.com. We will update projects and

products continuously according to your sincere advice.

*Warning

1. This product contains tiny parts(screws, copper pillars). Therefore, keep it

out of reach of children under 7 please.

2. This product consists of conductive parts (control board and electronic

module). Please operate according to the requirements of tutorial.

Otherwise, improper operation may cause parts to overheat and be

http://www.keyestudio.com/
http://m.138.gz.cn/webadmin/~CAmsnCrrNXhTAySKCerrIfWjjZuuWVfI/~/usr/mod_edituser.jsp?;uid=service@keyestudio.com;;clearCache=

 4

damaged. Do not touch or immediately disconnect the circuit power.

*Copyright

The keyestudio trademark and logo are the copyright of KEYES DIY ROBOT

co.,LTD. All products under keyestudio brand can’t be copied, sold and

resold by anyone or any companies without authorization. If you’re

interested in our products, please contact with our sales representative:

fennie@keyestudio.com

Mini Tank Robot V3
(Arduino tutorial)

http://m.138.gz.cn/webadmin/~CAmsnCrrNXhTAySKCerrIfWjjZuuWVfI/~/usr/mod_edituser.jsp?;uid=fennie@keyestudio.com;;clearCache=

 5

1. Introduction

This STEM educational V3.0 tank robot has been newly upgraded, adding a

line-tracking and a fire- extinguishing function. It vigorously enhances the

relationship between kids and parents, and sparks children’s imagination

through programming and coding.

In the course of assembly process, you can see its multiple functions like

light following, line tracking, IR and BT remote control, speed adjustment

and so on. Additionally, there are some small parts that can help you

assemble the robot car.

There are basic sensors and modules, such as a flame sensor, a BT sensor,

an obstacle avoidance sensor, an line tracking sensor and an ultrasonic

sensor. The two tutorials for C language and Arduino are also suitable for

 6

the enthusiasts at different ages.

It is really the best choice for you.

2.Features：

1.Multiple functions：Confinement, line tracking, fire extingushing, light

following, IR and BT remote control, speed control and so on

2. Easy to build: assemble the robot with tiny parts;

3. High tenacity: aluminum alloy brackets, metal motors, high quality

wheels;

4. High extension: connect with many sensors and modules through motor

driver shield and sensor shield;

5. Multiple controls: IR remote control, App control(iOS and Android

system);

6. Basic programming：C language code of Arduino IDE.

3.Parameters：

 7

Working voltage: 5v

Input voltage: 7-12V

Maximum output current: 2A

Maximum power dissipation: 25W (T=75℃)

Motor speed: 5V 200 rpm/min

Motor drive mode: dual H bridge drive(L298P)

Ultrasonic induction angle: <15 degrees

Ultrasonic detection distance: 2cm-300cm

Infrared remote control distance: 10 meters (measured)

BT remote control distance: 30 meters (measured)

4. Kit List

Picture Name QTY

1

Tank Robot Chassis 1

 8

2

Keyestudio V4.0

Development Board
1

3

L298P Motor Driver Shield 1

4

Keyestudio HM-10 BT-4.0 1

5

HC-SR04 Ultrasonic Sensor 1

6

Keyestudio 8*16 LED Panel 1

7

 Yellow LED Module 1

 9

8

 Flame Sensor 2

9

 130 Motor Module 1

10

 IR Receiver Module 1

11

 Photoresistor 2

12

Acrylic Board for

8*16 LED Panel
1

 10

13

Upper Board 1

14

Acrylic Board 2

15

Keyestudio JMFP-4 17-Key

Remote Control

(Without Batteries)

1

16

Keyestudio 9G 180 °Servo 1

17

USB Cable 1

18 3.0*40MM Screwdriver 1

19

4P M-F PH2.0mm to 2.54

DuPont Wire

(Green-Blue-Red-Black)

1

 11

20

4P HX-2.54 DuPont Wire

(Black-Red-White-Brown)
1

21

5P JST-PH2.0MM DuPont

Wire
1

22

3P-3P XH2.54 to 2.54

DuPont Wire

（Yellow-Red-Black)

1

23

3P-3P XH2.54 to PH2.0

DuPont Wire

（Yellow-Red-Black)

3

24

4P-3P XH2.54 to PH2.0

DuPont Wire

（Yellow-Red-Black)

2

25

4P XH2.54 to PH2.0

DuPont Wire

（Green-Blue-Red-Black)

1

26

M1.4*8MM Round-head

Screws
6

 12

27

M1.4 Nuts 6

28

M2 Nuts 8

29

M2*8MM Round-head

Screws
8

30
M1.2*5MM Round-head

Screws
6

31

M3*6MM Round-head

Screws
18

32

M3*10MM Round-head

Screws
3

33

M3 Nuts 3

34

M3*10MM Dual-pass

Copper Pillar
4

35

M3*40MM Dual-pass

Copper Pillar
4

36

43093 Blue Technic Axle

Pin with Friction Ridges
13

37

4265c Technic Bush
13

 13

38 Winding Pipe .12

39 3*100MM Ties 5

40

L Type M2.5 Wrench 1

41

L Type M3 Wrench 1

42

L Type M1.5 Wrench 1

43

Cardboard 1

 14

5. Installation

It is recommended to start the installation part after all projects are

learned.

Caution

1. Set the initial angle of the servo;

Peel thin films off boards before installing this robot

Step 1

 15

Required Parts

 16

Step 2

Required Parts

 17

Step 3

 18

Required Parts

 19

 20

Step 4

Required Parts

 21

 22

Step 5

Required Parts

 23

Step 6

 24

Required Parts

Note: The direction of

jumper caps

 25

Step 7

 26

Required Parts

 27

Step 8

Required Parts

 28

 29

Step 9（Need to adjust the angle of the servo）

Required Parts

 30

 31

Step 10

 32

 33

 34

 35

 36

Wiring up

 37

Hook Up the photo-resistor

 38

 39

Wire up the line tracking sensor

 40

 41

 42

Hook up the IR Receiver Module

 43

 44

Wire up the Ultrasonic Sensor

 45

Wire up the Servo

 46

Hook Up the 8*16LED Panel

 47

 48

Connection Diagram

 49

 50

 51

Dismantle two photoresistors and ultrasonic sensor, as shown

below

 52

 53

Replace them

with a fan

module and two

flame sensors

Then we get a

tank robot for

extinguishing fire

 54

Connection Diagram

 55

Hook up the fan

module and two

flame sensors

 56

 57

6.Install Arduino IDE and Driver

(1) Installing Arduino IDE

When you get control board, you need to download Arduino IDE and driver

firstly.

You could download Arduino IDE from the official website:

https://www.arduino.cc/, click the SOFTWARE on the browse bar, click

“DOWNLOADS”to enter download page, as shown below:

There are various versions of IDE for Arduino. Just download a version

compatible with your system. Here we will show you how to download and

install the windows version of Arduino IDE.

https://www.arduino.cc/

 58

There are two versions of IDE for WINDOWS system. You can choose

between the installer (.exe) and the Zip file. For installer, it can be directly

downloaded, without the need of installing it manually. However, for Zip

package, you will need to install the driver manually.

Click JUST DOWNLOAD.

 59

(2) Keyestudio V4.0 Development Board

You need to know that Keyestudio V4.0 development board is the core of

this smart car.

Keyestudio V4.0 development board is based on ATmega328P MCU, and

with a CP2102 Chip as a UART-to-USB converter.

 60

It has 14 digital input/output pins (of which 6 can be used as PWM output

s), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a power jac

k, 2 ICSP headers and a reset button.

 61

We can power it with a USB cable, the external DC power jack

(DC 7-12V) or female headers Vin/ GND(DC 7-12V).

 62

Micro controller ATmega328P-PU

Operating Voltage 5V

Input Voltage (recommended) DC7-12V

Digital I/O Pins

14 (D0-D13)

 (of which 6 provide PWM

output)

PWM Digital I/O Pins 6 (D3, D5, D6, D9, D10, D11)

Analog Input Pins 6 (A0-A5)

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory

32 KB (ATmega328P-PU) of

which 0.5 KB used by

bootloader

SRAM 2 KB (ATmega328P-PU)

EEPROM 1 KB (ATmega328P-PU)

Clock Speed 16 MHz

LED_BUILTIN D13

(3) Installing the Driver of the V4.0 Board

 63

Let’s install the driver of keyestudio V4.0 board. The USB-TTL chip on V4.0

board adopts CP2102 serial chip. The driver program of this chip is

included in Arduino 1.8 version and above

(https://www.silabs.com/products/development-tools/software/usb-to-ua

rt-bridge-vcp-drivers), which is convenient. Plugging on USB port of board,

the computer can recognize the hardware and automatically install the

driver of CP2102.

If you install unsuccessfully, or intend to install it manually, please open the

device manager of computer. Right click Computer----- Properties-----

Device Manager;

The yellow exclamation mark on the page implies an unsuccessful

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

 64

installation and you should double click the hardware and update the

driver;

Click“OK”to enter the following page. Click“browse my computer for

updated driver software”;

 65

Click “Browse”, then search the driver of CP2102 and click “Next”,

There is a DRIVERS folder in Arduino software installed package

（ ）, open driver folder and check the driver of CP210X

series chips.

 66

When opening the device manager, we will find the yellow exclamation

mark disappear.

The driver of CP2102 is installed successfully.

 67

 68

(4) Arduino IDE Setting

Click icon，and open Arduino IDE.

 69

When downloading the sketch to the board, you must select the correct

name of Arduino board that matches the board connected to your

computer. As shown below;

 70

Then select the correct COM port (you can see the corresponding COM

port after the driver is successfully installed)

 71

 72

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

(5) Start First Program

Open the file to select Example, and click BASIC>BLINK, as shown below:

 73

Set the correct COM port, and the corresponding board and COM port are

shown on the lower right of IDE.

 74

Click to start compiling the program, and check errors.

 75

Click to upload the program;

 76

After the program is uploaded successfully, the onboard LED blinks.

Congratulations, you have finished the first program.

7. How to Add a Library?
(1) What are Libraries ?

Libraries are a collection of code that make it easy for you to connect it to

sensors, displays, modules, etc.

For example, the built-in LiquidCrystal library helps talk to LCD displays.

There are hundreds of additional libraries available on the Internet for

downloading.

https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Reference/Libraries

 77

The built-in libraries and some of these additional libraries are listed in the

reference.

(2) How to Install a Library ?

Here we will introduce the most simple way to add libraries .

Step 1：After downloading well the Arduino IDE, you can right-click the

icon of Arduino IDE.

Find the option "Open file location" .

Step 2: Click Open file location >libraries

http://wiki.keyestudio.com/index.php/File:Libraries_1.png

 78

Step 3：Next, find the“libraries”folder of tank robot (seen in the link:

https://fs.keyestudio.com/KS0526)

Copy them into libraries of Arduino

 79

8. Projects

Note: (G), marked on each sensor and module, is the negative pole and

connected to“G”, ”-”or “GND”on the sensor shield or control board ;

(V) is the positive pole and linked with V , VCC, + or 5V on the sensor shield

or control board.

 80

Project 1: LED Blinks

(1) Description：

For starters and enthusiasts, “LED Blinks” is a fundamental program. LED,

the abbreviation of light emitting diodes, consists of Ga, As, P, N chemical

compounds and so on. The LED can flash in diverse colors by altering the

delay time in the test code. When in control, power on GND and VCC, the

LED will be on if S end is in high level; otherwise, it will go off.

(2）Parameters：

Control interface: digital port

Working voltage: DC 3.3-5V Pin

spacing: 2.54mm

LED display color: yellow

 81

(3) Components Needed:

Keyestudio V4.0

Development

Board *1

L298P Motor Driver

Shield*1

 Yellow LED

Module*1

3P-3P XH2.54 to

2.54 DuPont Wire

（Yellow-Red-Black

)

 USB Cable*1

(4) Motor Drive Shield V2：

There are many ways to drive a motor. Our robot car uses the most

common solution--L298P--which is an excellent high-power motor driver

 82

IC produced by STMicroelectronics. It can directly drive DC motors,

two-phase and four-phase stepping motors. The driving current is up to 2A,

and the output terminal of motor adopts eight high-speed Schottky diodes

as protection.

We designed a shield based on the circuit of L298p.

The stacked design reduces the technical difficulties of using and driving

the motor.

 83

(6) Connection Diagram：

LED is connected to D3 port, and remember to install jumper caps onto the

shield.

(7) Test Code：

/*

 keyestudio Mini Tank Robot V3

 lesson 1.1

 Blink

 http://www.keyestudio.com

*/

 84

int LED = 3; //Define the pin of LED to connect with digital port 3

void setup()

{

 pinMode(LED, OUTPUT); //Initialize the LED pin to output mode

}

void loop() //Form an infinite loop

{

 digitalWrite(LED, HIGH); //Output high level and turn on the LED

 delay(1000); //Wait for 1s

 digitalWrite(LED, LOW); //Output low level and turn on LED

 delay(1000); //Wait for 1s

}

(8) Test Results：

Upload the program, LED blinks at the interval of 1s.

(9) Code Explanation:

pinMode(LED，OUTPUT) - This function can denote that the pin is INPUT or

OUTPUT;

digitalWrite(LED，HIGH) - When pin is OUTPUT, we can set it to HIGH(output 5V)

or LOW(output 0V).

 85

(10)Extension Practice:：

We have succeeded in blinking LED. Next, let’s observe what will happen

to the LED if we modify pins and delay time.

/*

 keyestudio Mini Tank Robot V3

 lesson 1.2

 Blink

 http://www.keyestudio.com

*/

int LED = 3; //Define the pin of LED to connect with digital port 3

void setup()

{

 pinMode(LED, OUTPUT); //Initialize the LED pin to output mode

}

void loop() //Form an infinite loop

{

 digitalWrite(LED, HIGH); //Output high level and turn on LED

 delay(100); //Wait for 0.1s

 digitalWrite(LED, LOW); //Output low level and turn on LED

 delay(100); //Wait for 0.1s

}

 86

The test result shows that the LED flashes faster. Therefore, we can draw a

conclusion that pins and time delays affect its flash frequency.

Project 2: Adjust LED Brightness

(1) Description：

In previous lesson, we control LED on and off and make it blink.

In this project, we will control LED’s brightness through PWM simulating

breathing effect. Similarly, you can change the step length and time delay

in the code so as to demonstrate different breathing effects.

PWM is a means of controlling the analog output via digital means. Digital

control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

output.In general, the input voltages of ports are 0V and 5V. What if the 3V

is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

 87

For Arduino digital port voltage outputs, there are only LOW and HIGH

levels, which correspond to the voltage outputs of 0V and 5V respectively.

You can define LOW as“0”and HIGH as“1’, and let the Arduino output five

hundred‘0’or‘1’within 1 second. If output five hundred‘1’, that is 5V;

if all of which is‘0’,that is 0V; if output 250 01 pattern, that is 2.5V.

This process can be likened to showing a movie. The movie we watch are

not completely continuous. Actually, it generates 25 pictures per second,

which cannot be told by human eyes. Therefore, we mistake it as a

continuous process. PWM works in the same way. To output different

voltages, we need to control the ratio of 0 and 1. The more‘0’or‘1’ output

per unit time, the more accurate the control is.

 88

(2) Parameters：

Control interface: Digital port 3

Working voltage: DC 3.3-5V

Pin spacing: 2.54mm

LED display color: yellow

(3) Components Needed:：

Keyestudio V4.0

Development Board

*1

L298P Motor

Driver

Shield*1

 Yellow LED

Module*1

3P-3P XH2.54 to 2.54

DuPont Wire

（Yellow-Red-Black)*1

 USB Cable*1

 89

(4) Connection Diagram：

(5) Test Code：

/*

 keyestudio Mini Tank Robot V3

 90

 lesson 2.1

 pwm

 http://www.keyestudio.com

*/

int LED = 3; //Define the pin of LED to connect with digital port 3

void setup () {

 pinMode (LED, OUTPUT); //Initialize the LED pin to output mode

}

void loop () {

 for (int value = 0; value < 255; value = value + 1) {

 analogWrite (LED, value); // LED turns on

 delay (5); // Delay in 5ms

 }

 for (int value = 255; value > 0; value = value - 1) {

 analogWrite (LED, value); // LED turns off

 delay (5); // Delay in 5ms

 }

}

(6) Test Results：

After uploading test code successfully, LED gradually changes from bright

to dark, like human’s breath, rather than turning on and off immediately.

 91

(7) Code Explanation:

To repeat some certain statements, we could use FOR statement. FOR

statement format is shown below:

FOR cyclic sequence:

Round 1：1 → 2 → 3 → 4

Round 2：2 → 3 → 4

…

Until number 2 is not established, “for”loop is over.

After knowing this order, go back to code:

for (int value = 0; value < 255; value=value+1){

 ...}

for (int value = 255; value >0; value=value-1){

 ...}

The two“for”statements make value increase from 0 to 255, then reduce

from 255 to 0, then increase to 255,....forming an infinitely loop.

There is a new function in the following ----- analogWrite().

We know that digital port only has two state of 0 and 1. So how to send an

 92

analog value to a digital value? Here,this function is needed. Let’s observe

the Arduino board and find 6 pins marked“~”which can output PWM

signals.

Function format as follows:

analogWrite(pin,value)

analogWrite() is used to write an analog value from 0~255 for PWM port,

so the value is in the range of 0~255. Attention that you only write the

digital pins with PWM function, such as pin 3, 5, 6, 9, 10, 11.

PWM is a technology to obtain analog quantity through digital method.

Digital control forms a square wave, and the square wave signal only has

two states of turning on and off (that is, in high or low levels). By

controlling the ratio of the duration of turning on and off, a voltage varying

from 0 to 5V can be simulated. The time turning on(academically referred

to as high level) is called pulse width, so PWM is also called pulse width

modulation.

Through the following five square waves, let’s acknowledge more about

PWM.

 93

In the above figure, the green line represents a period, and value of

analogWrite() corresponds to a percentage which is called Duty Cycle as

well. Duty cycle implies that high-level duration is divided by low-level

duration in a cycle. From top to bottom, the duty cycle of first square wave

is 0% and its corresponding value is 0. The LED brightness is lowest, that is,

light off. The more time the high level lasts, the brighter the LED. Therefore,

the last duty cycle is 100%, which corresponds to 255, and LED is the

brightest. And 25% means darker.

PWM mostly is used for adjusting the LED’s brightness or the rotation

speed of motors.

It plays a vital role in controlling smart robot cars. I believe that you cannot

wait to learn next project.

 94

(8) Extension Practice：

Let’s modify the value of delay and remain the pin unchanged, then

observe how LED changes.

/*

 keyestudio Mini Tank Robot V3

 lesson 2.2

 pwm-slow

 http://www.keyestudio.com

*/

int LED = 3; //Define the pin of LED to connect with digital port 3

void setup () {

 pinMode (LED, OUTPUT); //Initialize the LED pin to output mode

}

void loop () {

 for (int value = 0; value < 255; value = value + 1) {

 analogWrite (LED, value); // LED turns on

 delay (30); // Delay in 30ms

 }

 for (int value = 255; value > 0; value = value - 1) {

 analogWrite (LED, value); // LED turns off

 95

 delay (30); // Delay in 30ms

 }

}

Upload the code to development board, LED flashes more slowly.

Project 3: Photoresistor

(1) Description：

The photosensitive resistor is a special resistor made of a semiconductor

material such as a sulfide or selenium, and a moisture-proof resin is also

coated with a photoconductive effect. The photosensitive resistance is

most sensitive to the ambient light, different illumination strength, and the

resistance of the photosensitive resistance is different. We use the

photosensitive resistance to design the photosensitive resistor module.

The module signal is connected to the microcontroller analog port. When

the light intensity is stronger, the larger the analog port voltage, that is, the

 96

simulation value of the microcontroller is also large; in turn, when the light

intensity is weaker, the smaller the analog port voltage, that is, the

simulation value of the microcontroller is also small. . In this way, we can

read the corresponding analog value using the photosensitive resistor

module, and the intensity of the light in the inductive environment.

(2) Parameters：

Photosensitive resistance

resistance value: 5K

Ou-0.5m

Interface type: simulation port A0, A1

Working voltage: 3.3V-5V

Pin spacing: 2.54mm

(3) Components Needed:

Keyestudio

V4.0

Development

L298P Motor

Driver

Shield*1

 Yellow LED

Module*1

3P-3P XH2.54

to 2.54 DuPont

Wire

 97

Board *1 （Yellow-Red-

Black)*1

 Photoresistor

*1

3P-3P XH2.54 to

PH2.0 Dupont

Wire

（Yellow-Red-Bl

ack)*1

 USB Cable*1

 98

(4) Connection Diagram

We connect a photoresistor to A0 and make an experiment.

Let’s read its analog value first.

(5) Test Code：

/*

 keyestudio Mini Tank Robot V3

 lesson 3.1

 photocell

 99

 http://www.keyestudio.com

*/

int sensorPin = A1; // A1 is the input pin of photoresistor

int sensorValue = 0; // save the value of photoresistors

void setup() {

 Serial.begin(9600); //Open the serial port monitor and set the baud rate to 9600

}

void loop() {

 sensorValue = analogRead(sensorPin); //Read the analog value from the

photoresistor sensor

 Serial.println(sensorValue); //The serial port prints the value of the photoresistor

 delay(500); //Delay in 500ms

}

(6) Test Results：

 100

When covering it, the value gets smaller; if not, the value gets larger.

(7) Code Explanation:

analogRead(sensorPin)：read the analog value of photoresistors;

Serial.begin(9600)：initialize serial port and set baud rate to 9600;

Serial.println：serial prints.

(8) Extension Practice:

We know the value of the photoresistor. How about controlling the LED’s

brightness by it?

 101

The LED’s brightness is controlled by PWM. Therefore, we connect the LED

to PMW pin(pin 3) of the shield.

/*

 keyestudio Mini Tank Robot V3

 lesson 3.2

 photocell-analog output

 http://www.keyestudio.com

*/

int analogInPin = A0; // A1 is the input pin of photoresistor

int analogOutPin = 3; // Digital port 3 is the output of PMW

int sensorValue = 0; // save the variable of the resistance value of photoresistors

int outputValue = 0; // Value output to PMW

 102

void setup() {

 Serial.begin(9600); //Open the serial port monitor and set the baud rate to 9600

}

void loop() {

 sensorValue = analogRead(analogInPin); //Read the analog value from the photoresistor sensor

 // Map the analog values 0~1023 to the PWM output values 255~0

 outputValue = map(sensorValue, 0, 1023, 255, 0);

 // Change analog output

 analogWrite(analogOutPin, outputValue);

 //

 //

 Serial.println(sensorValue); //The serial port prints the value of the photoresistor

 delay(2);

}

Upload code to the development board, then cover the photoresistor and

observe the LED’s brightness.

 103

Project 4: Line Tracking Sensor

(1) Description：

The tracking sensor is actually an infrared sensor. The component used

here is the TCRT5000 infrared tube.

Its working principle is to use different reflectivity of infrared light to colors,

then convert the strength of the reflected signal into a current signal.

During the process of detection, black is active at HIGH level while white is

active at LOW level. The detection height is 0-3 cm.

Keyestudio 3-channel line tracking module has integrated 3 sets of

TCRT5000 infrared tube on a single board, which is more convenient for

wiring and control.

By rotating the adjustable potentiometer on the sensor, it can adjust the

detection sensitivity of the sensor.

 104

(2) Parameters：

Operating Voltage: 3.3-5V (DC)

Interface: 5PIN

Output Signal: Digital signal

Detection Height: 0-3 cm

Special note: before testing,rotate the potentiometer on the sensor to

adjust the detection sensitivity. When adjust the LED at the threshold

between ON and OFF, the sensitivity is the best.

(3) Components Needed:

Keyestudio

V4.0

Development

Board *1

L298P Motor

Driver Shield

 Yellow LED

Module*1

3P-3P XH2.54 to

2.54 DuPont

Wire

（Yellow-Red-Bl

ack)*1

 105

Note: the line tracking sensor is installed under the bottom of the robot.

(4) Connection Diagram：

Tank Robot

Chassis *1

5P

JST-PH2.0MM

Dupont Wire*1

 USB Cable*1

 106

(5) Test Code：

/*

 keyestudio Mini Tank Robot V3

 lesson 4.1

 Line Track sensor

 http://www.keyestudio.com

*/

//The wiring of line tracking sensors

#define L_pin 6 //for the sensor in the left

#define M_pin 7 //for the sensor in the middle

#define R_pin 8 //for the sensor in the right

void setup()

{

 Serial.begin(9600); //Set the baud rate to 9600

 pinMode(L_pin, INPUT); //Set all pins of the line tracking sensors to input mode

 pinMode(M_pin, INPUT);

 pinMode(R_pin, INPUT);

}

void loop ()

 107

{

 int L_val = digitalRead(L_pin); //Read the value of the left sensor

 int M_val = digitalRead(M_pin); //Read the value of the middle sensor

 int R_val = digitalRead(R_pin); //Read the value of the right sensor

 Serial.print(L_val);

 Serial.print(" ");

 Serial.print(M_val);

 Serial.print(" ");

 Serial.print(R_val);

 Serial.println(" ");

 delay(100); //delay in 100ms

}

(6) Test Results：

Upload the code on development board, open serial monitor to check line

tracking sensors. And the displayed value is 1(high level) when no signals

are received. The value shifts into 0 when the sensor is covered with paper.

 108

(7) Code Explanation:

Serial.begin(9600)- Initialize serial port, set baud rate to 9600;

pinMode- Define the pin as input or output mode;

digitalRead- Read the state of pin, which are generally HIGH and LOW

level;

(8)Extension Practice：

After knowing its working principle, you can connect an LED to D3 so as to

control LED by line tracking sensor.

 109

/*

 keyestudio Mini Tank Robot V3

 lesson 4.2

 Line Track sensor

 http://www.keyestudio.com

*/

//LED pin

#define LED 3

//The wiring of line tracking sensors

#define L_pin 6 //for the sensor in the left

#define M_pin 7 //for the sensor in the middle

#define R_pin 8 //for the sensor in the right

 110

void setup(){

 Serial.begin(9600); //Set the baud rate to 9600

 pinMode(LED, OUTPUT); //Set LED to output mode

 pinMode(L_pin, INPUT); //Set all pins of the line tracking sensors to input mode

 pinMode(M_pin, INPUT);

 pinMode(R_pin, INPUT);

}

void loop (){

 int L_val = digitalRead(L_pin); //Read the value of the left sensor

 int M_val = digitalRead(M_pin); //Read the value of the middle sensor

 int R_val = digitalRead(R_pin); //Read the value of the right sensor

 Serial.print(L_val);

 Serial.print(" ");

 Serial.print(M_val);

 Serial.print(" ");

 Serial.print(R_val);

 Serial.println(" ");

 delay(100); //Delay in 100ms

 if (L_val == 0 || M_val == 0 || R_val == 0) {

 digitalWrite(LED, HIGH);

 }

 111

 else {

 digitalWrite(LED, LOW);

 }

}

Project 5: Flame Sensor

(1) Description：

The flame sensor uses IR receiving tube to detect flames, converts the

brightness of the flame into signals with high and low levels, input them

into the central processor. The corresponding program processes. In both

flames close to and without flames, the voltage value of the analog port is

varied.

If there is no flame, the analog port is about 0.3V; when there is a flame,

the analog port is 1.0V. The closer the flame is , the bigger the voltage

value is. It can be used to detect the fire source or make a smart robot.

Note the probe of flame sensors only bears the temperature between

-25 ℃and ～85℃.

In the process of use, pay attention to keep the flame sensor in certain

distance to avoid getting damaged.

 112

(2) Parameters：

Working voltage: 3.3V-5V (DC)

Current: 100mA

Maximum power: 0.5W

Work temperature: -10 ° C to +50 degrees Celsius

Sensor size: 31.6mmx23.7mm

Interface: 4pin turn 3PIN interface

Output signal: analog signals A0, A1

(3) Components Needed:

Keyestudio

V4.0

Development

Board *1

L298P Motor

Driver Shield

 Yellow LED

Module*1

3P-3P XH2.54 to

2.54 DuPont Wire

（Yellow-Red-Blac

k)*1

 113

(4) Connection Diagram：

Flame

Sensor*1

4P-3P XH2.54 to

PH2.0

Dupont Wire

（Yellow-Red-Black)

 USB

Cable*1

 114

We can use two flame sensors to make a fire-distinguishing robot car. But

in this experiment, we aim to read its analog value.

(5) Test Code：

/*

 keyestudio Mini Tank Robot V3

 lesson 5.1

 flame sensor

 http://www.keyestudio.com

*/

int flame = A1; //Define the flame pin as analog pin A1

 115

int val = 0; //Define digital variables

void setup() {

 pinMode(flame, INPUT); //Define the buzzer as an input source

 Serial.begin(9600); //Set the baud rate to 9600

}

void loop() {

 val = analogRead(flame); //Read the analog value of the flame sensor

 Serial.println(val);//Output analog value and print it

 delay(100); //Delay in 100ms

}

(6) Test Result：

Wire up components, burn the code and open the serial monitor to set the

baud rate to 9600.

You can view the simulation value of flame sensor.

The closer the flame, the smaller the simulation value.

Adjust the potentiometer on the module to maintain D1 at the critical

point. When the sensor does not detect flame, the D1 will be off, but if the

sensor detects flame, the D1 will be on.

 116

(7) Extension Practice:

Next, connect an LED to pin 3 and we can control it by a flame sensor, as

shown below:

 117

/*

 keyestudio Mini Tank Robot V3

 lesson 5.2

 flame sensor

 http://www.keyestudio.com

*/

int flame = A0; //Define the flame pin as analog pin A0

int LED = 3; //Define the LED as digital port 3

int val = 0; //Define digital variables

void setup() {

 pinMode(flame, INPUT); //Define the buzzer as an input source

 pinMode(LED, OUTPUT); //Set LED to output mode

 Serial.begin(9600); //Set the baud rate to 9600

}

void loop() {

 val = analogRead(flame); //Read the analog value of the flame sensor

 Serial.println(val);//Output analog value and print it

 if (val < 300) { //When analog value is less than 300, LED is on

 digitalWrite(LED, HIGH); //LED is on

 } else {

 digitalWrite(LED, LOW); //LED is off

 }

 118

 delay(50); //Delay in 50ms

}

Project 6: Fan

(1) Description：

This fan module uses a HR1124S motor-controlling chip, a single-channel

H-bridge driver chip containing a low-conductivity resistance PMOS and

NMOS power tubes. The low-conducting resistance can ease the power

consumption, contributing to the safe work of the chip for longer time.

In addition, its low standby current and low static working current makes

itself apply to toys. We can control the rotation direction and speed of the

fan by outputting IN + and IN- signals and PWM signals.

(2）Parameters：

Working voltage: 5V

 119

Current: 200mA

Maximum power: 2W

Working temperature: -10 ° C to +50 ° C

Size: 47.6mm * 23.8mm

(2) Components Needed:

Keyestudio V4.0

Development

Board *1

L298P Motor

Driver Shield

 130 Motor

*1

4P XH2.54 to PH2.0

DuPont Wire

（Green-Blue-Red-Bl

ack) *1

 Flame Sensor*1

4P-3P XH2.54

to PH2.0

Dupont Wire

（Yellow-Red-

Black)

 USB

Cable*1
Tank Robot Chassis

 120

The fan module needs driving by large current; therefore, we install a

battery holder.

(3) Connection Diagram：

 121

The pin GND, VCC, IN+ and IN- of the fan module are connected to pin G, V,

12 and 13 of the shield respectively.

(4) Test Code：

/*

 keyestudio Mini Tank Robot V3

 lesson 6.1

 130 motor

 http://www.keyestudio.com

*/

 122

int INA = 12;

int INB = 13;

void setup() {

 pinMode(INA, OUTPUT);//Set digital port INA as output

 pinMode(INB, OUTPUT);//Set digital port INA as output

void loop() {

 //Set the fan to rotate anticlockwise for 3s

 digitalWrite(INA, LOW);

 digitalWrite(INB, HIGH);

 delay(3000);

 //Set the fan to stop for 1s

 digitalWrite(INA, LOW);

 digitalWrite(INB, LOW);

 delay(1000);

 //Set the fan to rotate clockwise for 3s

 digitalWrite(INA, HIGH);

 digitalWrite(INB, LOW);

 delay(3000);

}

//***

 123

(5) Test Results：

Upload code, wire up components and plug in power. The small fan will

turn anticlockwise for 3000ms, stop for 1000ms, and run clockwise for

300ms.

(6) Extension Practice:

We have understood the working principle of the flame sensor. Next, hook

up a flame sensor in the circuit , as shown below. Then control the fan to

blew out fire with the flame sensor.

/*

 keyestudio Mini Tank Robot V3

 lesson 6.2

 124

 130 motor

 http://www.keyestudio.com

*/

int INA = 12;

int INB = 13;

int flame = A0; //Define the flame pin as analog pin A0

int val = 0; //Define digital variables

void setup() {

 pinMode(INA, OUTPUT);//Set digital port INA as output

 pinMode(INB, OUTPUT);//Set digital port INA as output

 pinMode(flame, INPUT); //Define the buzzer as an input source

}

void loop() {

 val = analogRead(flame); //Read the analog value of the flame sensor

 if (val <= 700) { //When analog value is less than 700, LED is on

 //Turn on the fan when flame is detected

 digitalWrite(INA, LOW);

 digitalWrite(INB, HIGH);

 } else {

 //Otherwise it stops operating

 digitalWrite(INA, LOW);

 125

 digitalWrite(INB, LOW);

 }

}

Project 7: Servo Control

(1) Description

Servo motor is a position control rotary actuator. It mainly consists of a

housing, a circuit board, a core-less motor, a gear and a position sensor. Its

working principle is that the servo receives the signal sent by MCU or

receiver and produces a reference signal with a period of 20ms and width

of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

When the motor speed is constant, the potentiometer is driven to rotate

through the cascade reduction gear, which leads that the voltage

difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle

of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM

signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

 126

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

In general, servo has three lines in brown, red and orange. The brown wire

is grounded, the red one is a positive pole line and the orange one is a

signal line.

The angle of the servo:

 127

(2) Parameters：

Working voltage: DC 4.8V ~ 6V;

Operating angle range: about 180 ° (at 500 → 2500 μsec);

Pulse width range: 500 → 2500 μsec;

No-load speed: 0.12 ± 0.01 sec / 60 (DC 4.8V) 0.1 ± 0.01 sec / 60 (DC 6V);

No-load current: 200 ± 20mA (DC 4.8V) 220 ± 20mA (DC 6V);

Stopping torque: 1.3 ± 0.01kg · cm (DC 4.8V) 1.5 ± 0.1kg · cm (DC 6V);

Stop current: ≦ 850mA (DC 4.8V) ≦ 1000mA (DC 6V);

Standby current: 3 ± 1mA (DC 4.8V) 4 ± 1mA (DC 6V);

(3) Components Needed:

Keyestudio V4.0

Development

Board *1

L298P Motor

Driver Shield

 Yellow LED

Module*1

3P-3P XH2.54 to

2.54 DuPont Wire

（Yellow-Red-Black

)*1

HC-SR04 4P M-F PH2.0mm USB Cable*1 Tank Robot Chassis

 128

(4) Connection Diagram：

Note: The brown, red and orange wire of the servo are respectively

attached to Gnd(G), 5v(V) and 10 of the shield. Remember to connect an

external power because of the high current of the servo. If not, the

development board will be burnt out.

Ultrasonic

Sensor*1

to 2.54 DuPont

Wire

*1

 129

(5) Test Code1：

/*

 keyestudio Mini Tank Robot V3

 lesson 7.1

 Servo

 http://www.keyestudio.com

*/

#define servoPin 10 //The pin of servo

int pos; //The variable of servo’s angle

int pulsewidth; //The variable of servo’s pulse width

void setup() {

 pinMode(servoPin, OUTPUT); //Set the pin of servo as output

 procedure(0); //Set the angle of servo to 0°

}

void loop() {

 for (pos = 0; pos <= 180; pos += 1) { // From 1°to 180°

 // in steps of 1 degree

 procedure(pos); // Rotate to the angle of 'pos'

 delay(15); //Control the speed of rotation

 }

 for (pos = 180; pos >= 0; pos -= 1) { // From 180° to 1°

 procedure(pos); // Rotate to the angle of 'pos'

 130

 delay(15);

 }

}

//The function controls the servo

void procedure(int myangle) {

 pulsewidth = myangle * 11 + 500; //Calculate the value of pulse width

 digitalWrite(servoPin, HIGH);

 delayMicroseconds(pulsewidth); //The time in high level represents the pulse width

 digitalWrite(servoPin, LOW);

 delay((20 - pulsewidth / 1000)); //As the cycle is 20ms, the time left is in low level

}

After uploading the code, we will see the servo move from 0° to 180°. In

the following chapters, we will introduce how to drive a servo. Additionally,

we can control a servo with a servo library of Arduino.

You can refer to the link for the use of the servo library:

https://www.arduino.cc/en/Reference/Servo.

https://www.arduino.cc/en/Reference/Servo

 131

(6) Test Code2:

/*

 keyestudio Mini Tank Robot V3

 lesson 7.2

 Servo

 http://www.keyestudio.com

*/

#include <Servo.h>

Servo myservo; //

int pos = 0; // Save the variables of angle

void setup() {

 myservo.attach(10); //Connect the servo with digital port 9

}

void loop() {

 for (pos = 0; pos <= 180; pos += 1) { //From 0°to 180°

 //step length is 1

 myservo.write(pos); // Rotate to the angle of 'pos'

 delay(15); // Wait for 15ms to control speed

 }

 for (pos = 180; pos >= 0; pos -= 1) { //From 180° to 0°

 myservo.write(pos); // Rotate to the angle of 'pos'

 delay(15); // Wait for 15ms to control speed

 132

 }

}

(7) Test Results：

After uploading the code and plugging in power, the servo moves in the

range of 0° to 180°.

(8) Code Explanation

Arduino comes with #include <Servo.h> (servo function and statement）

The following are some common statements of the servo function:

1. attach（interface）——Set servo interface, port 9 and 10 are available;

2. write（angle）——The statement to set rotation angle of servo, the angle

range is from 0° to 180°;

3. read（）——The statement to read angle of servo, read the command

value of “write()”;

4. attached（）——Judge if the parameter of servo is sent to its interface .

Note: The above written format is“servo variable name, specific statement

（）”, for instance: myservo.attach(9)

 133

Project 8: Ultrasonic Sensor

(1) Description：

The HC-SR04 ultrasonic sensor uses sonar to determine distance to an

object like what bats do. It offers excellent non-contact range detection

with high accuracy and stable readings in an easy-to-use package. It comes

complete with ultrasonic transmitter and receiver modules.

The HC-SR04 or the ultrasonic sensor is being used in a wide range of

electronics projects for creating obstacle detection and distance measuring

application as well as various other applications. Here we have brought the

simple method to measure the distance with arduino and ultrasonic sensor

and how to use ultrasonic sensor with arduino.

(2）Parameters：

Power Supply :+5V DC

Quiescent Current : <2mA

Working Current: 15mA

Effectual Angle: <15°

 134

Ranging Distance : 2cm – 400 cm

Resolution : 0.3 cm

Measuring Angle: 30 degree

Trigger Input Pulse width: 10uS

(3) Components Needed:

Keyestudio

V4.0

Development

Board *1

L298P Motor Driver Shie

ld

 Yellow

LED

Module*1

3P-3P XH2.54 to

2.54 DuPont Wire

（Yellow-Red-Black)

*1

HC-SR04

Ultrasonic

Sensor*1

4P M-F PH2.0mm to

2.54 DuPont Wire

 USB

Cable*1

Tank Robot Chassis

*1

 135

(4) The principle of ultrasonic sensor

As the above picture shown, it is like two eyes. One is the transmitting end,

the other is the receiving end.

The ultrasonic module will emit the ultrasonic waves after triggering a

signal. When the ultrasonic waves encounter the object and are reflected

back, the module outputs an echo signal, so it can determine the distance

of the object from the time difference between the trigger signal and echo

signal.

The t is the time that emitting signal meets obstacle and returns. And the

propagation speed of sound in the air is about 343m/s, and distance =

speed * time. However, the ultrasonic wave emits and comes back, which is

2 times of distance. Therefore, it needs to be divided by 2, the distance

measured by ultrasonic wave = (speed * time)/2

1. Use method and timing chart of ultrasonic module:

Setting the delay time of Trig pin of SR04 to 10μs at least, which can trigger

it to detect distance.

2. After triggering, the module will automatically send eight 40KHz

ultrasonic pulses and detect whether there is a signal return. This step will

be completed automatically by the module.

3. If the signal returns, the Echo pin will output a high level, and the

 136

duration of the high level is the time from the transmission of the

ultrasonic wave to the return.

Circuit diagram of ultrasonic sensor:

Trigger signals

Send ultrasonic waves Send 8t 40KHz ultrasonic pulses

Module gets the time gap of transmission

and reception

Test result

10us high level

 137

(5) Connection Diagram：

Note: The pin VCC, Trig, Echo and Gnd of the ultrasonic sensor are

respectively connected to 5v(V), 12(S), 13(S) and Gnd(G) of the shield.

(6) Test Code：

/*

 keyestudio Mini Tank Robot V3

 lesson 8.1

 Ultrasonic sensor

 http://www.keyestudio.com

*/

int trigPin = 12; // Pin Trig attach to 12

 138

int echoPin = 13; // Pin Echo attach to 13

long duration, cm, inches;

void setup() {

 //Serial Port begin

 Serial.begin (9600);//Set the baud rate to 9600

 //Define input and output

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

}

void loop() {

 //

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);//At least give 10us high level trigger

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 // The time in high level equals the time gap between the transmission and the return of the

ultrasonic sound

 duration = pulseIn(echoPin, HIGH);

 // Translate into distance

 cm = (duration / 2) / 29.1; // Convert to inch

 inches = (duration / 2) / 74; // Convert to inch

 139

 //Serial port print it

 Serial.print(inches);

 Serial.print("in, ");

 Serial.print(cm);

 Serial.print("cm");

 Serial.println();

 delay(50);

}

(7) Test Results：

Upload test code on the development board and open serial monitor to set

baud rate to 9600. The detected distance will be displayed, and the units

are cm and inch. Block the ultrasonic sensor by hand, the displayed

distance value gets smaller.

 140

(8) Code Explanation:

int trigPin- this pin is defined to transmit ultrasonic waves, generally

output;

int echoPin - this is defined as the pin of reception, generally input;

cm = (duration/2) / 29.1-unit is cm

inches = (duration/2) / 74-unit is inch

We can calculate the distance by using the following formula:

distance = (traveltime/2) x speed of sound.

The speed of sound is: 343m/s = 0.0343 cm/uS = 1/29.1 cm/uS.

Or in inches: 13503.9in/s = 0.0135in/uS = 1/74in/uS.

We need to divide the travel time by 2 because we have to take into

 141

account that the wave was sent, hit the object, and then returned back to

the sensor.

(9) Extension Practice:

We have just measured the distance displayed by the ultrasonic. How

about controlling the LED with the measured distance? Let's try it and

connect an LED light module to the D3 pin.

/*

 keyestudio Mini Tank Robot V3

 lesson 8.2

 142

 Ultrasonic LED

 http://www.keyestudio.com

*/

int trigPin = 12; // Pin Trig attach to 12

int echoPin = 13; // Pin Echo attach to 13

int LED = 3;

long duration, cm, inches;

void setup() {

 //enable the serial port

 Serial.begin (9600);//Set the baud rate to 9600

 //Define input and output

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 pinMode(LED, OUTPUT);

}

void loop() {

 //

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);//At least give 10us high level trigger

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 143

 // The time in high level equals the time gap between the transmission and the return of the

ultrasonic sound

 duration = pulseIn(echoPin, HIGH);

 //Translate into distance

 cm = (duration / 2) / 29.1; // Convert to centimetre

 inches = (duration / 2) / 74; // Convert to inch

 //Serial port print it

 Serial.print(inches);

 Serial.print("in, ");

 Serial.print(cm);

 Serial.print("cm");

 Serial.println();

 if (cm >= 2 && cm <= 10) {

 digitalWrite(LED, HIGH);//LED is on

 } else {

 digitalWrite(LED, LOW); //LED is off

 }

 delay(50);

}

Upload test code to development board and block ultrasonic sensor by

hand, then check if LED is on.

 144

Project 9: IR Reception

(1) Description：

There is no doubt that infrared remote control is ubiquitous in daily life. It

is used to control various household appliances, such as TVs, stereos, video

recorders and satellite signal receivers. Infrared remote control is

composed of infrared transmitting and infrared receiving systems, that is,

an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.

The 38K infrared carrier signal emitted by remote controller is encoded by

the encoding chip in the remote controller. It is composed of a section of

pilot code, user code, user inverse code, data code, and data inverse code.

The time interval of the pulse is used to distinguish whether it is a 0 or 1

signal and the encoding is made up of these 0, 1 signals.

The user code of the same remote control is unchanged while the data

 145

code can distinguish the key.

When the remote control button is pressed, the remote control sends out

an infrared carrier signal. When the IR receiver receives the signal, the

program will decode the carrier signal and determines which key is pressed.

The MCU decodes the received 01 signal, thereby judging what key is

pressed by the remote control.

Infrared receiver we use is an infrared receiver module. Mainly composed

of an infrared receiver head, which is a device that integrates reception,

amplification, and demodulation. Its internal IC has completed

demodulation, and can achieve from infrared reception to output and be

compatible with TTL signals. Additionally, it is suitable for infrared remote

control and infrared data transmission. The infrared receiving module

made by the receiver has only three pins, signal line, VCC and GND. It is

very convenient to communicate with Arduino and other microcontrollers.

(2) Parameters:

 146

Operating Voltage: 3.3-5V（DC）

Interface: 3PIN

Output Signal: Digital signal

Receiving Angle: 90 degrees

Frequency: 38khz

Receiving Distance: 10m

(3) Components Needed:

Keyestudio V4.0

Development

Board *1

L298P Motor

Driver Shield*1

Yellow LED

Module*1

3P-3P XH2.54 to

2.54 DuPont

Wire

（Yellow-Red-Bl

ack)*1

 IR Receiver

Module *1

3P-3P XH2.54 to

PH2.0 DuPont

Wire

（Yellow-Red-Bla

USB Cable
Tank Robot

Chassis *1

 147

(3) Connection Diagram：

ck)

 148

Note: the pin “-”,“+”and S of the IR receiver are respectively connected

to pin G（GND）, V（VCC）and A2 of the L298P motor driver shield. On the

condition that the analog ports are not abundant, they also can be served

as digital ports. A0 is equal to D14, A1 means D15.

(5) Test Code：

Before uploading the following code, import the library of IR receiver

module.

/*

 keyestudio Mini Tank Robot V3

 lesson 9.1

 IRremote

 http://www.keyestudio.com

*/

#include <IRremote.h> //IRremote library statement

int RECV_PIN = A2; //define the pin of IR receiver as A2

IRrecv irrecv(RECV_PIN);

decode_results results; //decoding results are saved in the result

void setup() {

 Serial.begin(9600);

 irrecv.enableIRIn(); //enable the IR receiver

}

 149

void loop() {

 if (irrecv.decode(&results))//decode successfully, and receive a group of IR signals

 {

 Serial.println(results.value, HEX);//output and receive code in 16 hexadecimal

 irrecv.resume(); //receive next value

 }

 delay(100);

}

(6) Test Results：

Upload test code, open serial monitor to set baud rate to 9600 and point

remote control to IR receiver. Then the corresponding value will be shown.

If holding down keys for a while, the error codes will appear.

 150

Below we have listed out each key value of keyestudio remote control. So

you can keep it for reference.

 151

(7) Code Explanation:

irrecv.enableIRIn(): after enabling IR decoding, the IR signals will be

received, then function “ decode() ” will check continuously if decode

successfully.

irrecv.decode(&results): after decoding successfully, this function will

come back to “true”, and keep result in “results”. After decoding a IR

signals, run the resume()function and receive the next signal.

(8) Extension Practice:

We decoded the key value of IR remote control. How about controlling LED

by the measured value? We could design an experiment.

Attach an LED to D3, then press the keys of remote control to make LED

light on and off.

 152

/*

 keyestudio Mini Tank Robot V3

 lesson 9.2

 IRremote

 http://www.keyestudio.com

*/

#include <IRremote.h> //IRremote library statement

int RECV_PIN = A2; //define the pin of the IR receiver as A2

int LED = 3;

bool flag = 0;

IRrecv irrecv(RECV_PIN);

decode_results results; //

void setup() {

 153

 Serial.begin(9600);

 pinMode(LED, OUTPUT);// set pins of LED as OUTPUT

 irrecv.enableIRIn(); //enable the receiver

}

void loop() {

 if (irrecv.decode(&results)) {

 if (results.value == 0xFF02FD & flag == 0) //if OK key is pressed

 {

 digitalWrite(LED, HIGH); //LED is off

 flag = 1;

 }

 else if (results.value == 0xFF02FD & flag == 1) //press again

 {

 digitalWrite(LED, LOW); //LED is off

 flag = 0;

 }

 irrecv.resume(); // receive next value

 }

}

Upload code to development board, press the“OK”key on remote control

to make LED on and off.

 154

Project 10: Bluetooth Remote Control

(1)Description:

In the last several decades, Bluetooth has become the most popular

wireless communication module for it is easy to use and has found wide

applications in most devices powered by batteries.

In order to adjust with the time and reality and meet the needs of

customers, Bluetooth has been upgraded several times. In recent years, it

embraces lots of transformations in terms of data transfer rate, power

consumption of wearable devices and IoT devices, and security systems

and others. Here, we plan to learn about HM-10 BLE 4.0 with Arduino

board.

HM-10,a 4.0 Bluetooth module, can serves as a platform for wireless data

communication at any time. This module is designed using Texas

Instruments (TI) CC2540 or CC2541 Bluetooth Low Energy (BLE)

System-on-Chip (SoC).

 155

(2）Parameters：

1. Bluetooth protocol: Bluetooth Specification V4.0 BLE;

2. No byte limit in serial port Transceiving;

3. In open environment, realize 100m ultra-distance

communication with iphone 4s ;

4. USB protocol: USB V2.0;

5. Working frequency: 2.4GHz ISM band;

6. Modulation method: GFSK(Gaussian Frequency Shift Keying);

7. Transmission power: -23dbm, -6dbm, 0dbm, 6dbm, can be modified by

AT command;

8. Sensitivity: ≤-84dBm at 0.1% BER;

9. Transmission rate:Asynchronous: 6K bytes

 Synchronous: 6k Bytes

10. Security feature: Authentication and encryption;

11. Supporting service: Central & Peripheral UUID FFE0, FFE1;

12. Power consumption: Auto sleep mode, stand by current 400uA~800uA,

8.5mA during transmission;

13. Power supply: 5V DC ;

14. Working temperature: –5 ~ +65 Centigrade.

 156

(3)Components Needed:

(4) Connection Diagram:

1.STATE is the status test pin connected to the internal light-emitting diode

and usually remains unconnected.

2.RXD is the serial port interface for receiving terminal.

Keyestudio

V4.0

Development

Board *1

Keyestudio L298P

Motor Driver Shield

Yellow LED

Module*1

3P-3P XH2.54 to

2.54 DuPont Wire

（Yellow-Red-Blac

k)

Keyestudio

HM-10 BT-4.0

Module*1

USB Cable*1

 157

3.TXD is the serial port interface for sending terminal.

4.GND is for ground.

5.VCC is the positive pole.

6.EN/BRK: the disconnection of it represents the disconnection of the

Bluetooth and it usually remains unconnected.

 (Note: here the Bluetooth is directly linked with the V2 shield and please

pay attention to the direction)

 158

(5)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 10.1

 Bluetooth

 http://www.keyestudio.com

*/

char ble_val; //Character variable(used to store the value received by

Bluetooth)

void setup() {

 Serial.begin(9600);

}

void loop() {

 if (Serial.available() > 0) //Determine whether there is data in the serial

port buffer

 {

 ble_val = Serial.read(); //Read the data in the serial port buffer

 Serial.println(ble_val); //Print in out

 }

}

 159

//***

(Note: Do not connect the Bluetooth module before uploading the code,

because the uploading of the code also uses serial communication, and

there may be conflicts with the serial communication of the Bluetooth,

which can cause the uploading of the code to fail.)

Upload the code to the development board, then plug in the Bluetooth

module, and then wait for the instructions from the mobile phone.

(6)Download Bluetooth APP:

The above code is for reading the signals received by the serial port. Then a

device used to send out signals is required. In this project, this device is a

smart phone. The phone transmits signals and the Bluetooth receives these

signals and prints them on the serial port of the development board. And

we also need to download an App on our phones.

1.Download instructions for Apple system:

Go to APP STORE→search for BLE Scanner 4.0→download it to your phone.

 160

2.Download instructions for Android system:

Go to Google Play→search for BLE Scanner 4.0→download it to your

phone.

3.After the installation is complete, open the app and enable the "Location

and Bluetooth" permission

4. The usage of this App is almost the same for Apple system and Android

https://developer.android.google.cn/distribute?hl=zh-cn

 161

system. And here we intend to take Apple system as an example to explain

how to use it properly.

5.Scan for Bluetooth devices and the name of Bluetooth BLE 4.0 is HMSoft

which does not have a pairing password. Therefore, click connect to

connect to HMSoft and then you can start using it.

6.After the pairing, click it, and you will get many options, such as device

information, general access rights, general attributes, custom services and

others. Among all these options, select "Customize Service".

 162

7.Then the following page pops up.

 163

8.Click words（Read,Notify,WriteWithoutResponse) in blue to enter the

following page.

9.Tap Write Value and the page HEX or Tex appears as shown in the figure

below.

 164

10. Open the serial port monitor of Arduino and input a 0 or other

character.

11. Click Write and open serial port monitor to confirm whether it the

signal 0 or other character is received.

 165

(7) Code Explanation

Serial.available() represents the number of characters currently remaining

in the serial port buffer. This function is generally used to determine

whether there is data in this area. When Serial.available()>0, it means that

the serial port has received data and can be read.

Serial.read() refers to taking out and reading a Byte of data from the serial

port buffer. For example, if a device sends data to the Arduino through the

serial port, we can use Serial.read() to read the sent data.

()()

 166

(8)Expansion Project

In the above project, we have explained that the Bluetooth receives the

signal sent by the mobile phone and displayed it on the serial port of the

development board. Now let’s think about a question that can we use the

received signal to do something else? The answer is positive. Here we plan

to use the command sent by the mobile phone to turn on or off an LED.

From the wiring diagram, we can find that an LED is connected to pin D3.

/*

 keyestudio Mini Tank Robot V3

 lesson 10.2

 Bluetooth

 http://www.keyestudio.com

 167

*/

int LED = 3;

int ble_val; //Integer variable(used to store the value received by Bluetooth)

void setup() {

 Serial.begin(9600);

 pinMode(LED, OUTPUT);

}

void loop() {

 if (Serial.available() > 0) //Determine whether there is data in the serial port buffer

 {

 ble_val = Serial.read(); //Read the data in the serial port buffer

 Serial.println("DATA RECEIVED:");

 Serial.println(ble_val);

 if (ble_val == '1') {

 digitalWrite(LED, HIGH);

 Serial.println("led on");

 }

 if (ble_val == '0') {

 digitalWrite(LED, LOW);

 Serial.println("led off");

 }

 168

 }

}

Click Write on the mobile APP and send 1 or 0 to control the LED. When

you send “1”, the LED is on, and when you send“0”, the LED is off. (After

the Bluetooth project is completed, unplug it from the development board,

so as not to affect the subsequent code burning process)

Project 11: Motor Driving and Speed Control

(1)Description:

There are many ways to drive motors. Our smart car uses the most

common solution called L298P.

L298P, produced by STMicroelectronics, is an excellent driving chip

 169

specially designed for driving high-power motors . It can directly drive DC

motors, two-phase and four-phase motors with the driving current

reaching 2A. And the motor’s output terminal adopts 8 high-speed

Schottky diodes as protection. We have designed an expansion board

based on the L298P circuit of which the laminated design can be directly

plugged into the UNO R3 board for use reducing the technical difficulties

for users in using and driving the motor.

Stack the expansion board on the board, power the BAT , turn the DIP

switch to the ON end, and power the expansion board and the UNO R3

board at the same time via external power supply. In order to facilitate

wiring, the expansion board is equipped with anti-reverse interface (PH2.0

-2P -3P -4P -5P) and thus it can be directly plug with motors, power supply,

and sensors /modules. The Bluetooth interface of the drive expansion

board is fully compatible with the Keyestudio HM-10 Bluetooth module.

Therefore, we only need to insert the HM-10 Bluetooth module into the

corresponding interface when connecting. At the same time, the drive

extension board also uses 2.54 pin headers to extend out some available

digital ports and analog ports, so that you can continue to add other

sensors and carry out expansion experiments.

The expansion board can be connected to 4 DC motors. In the default

 170

jumper cap connection mode, the A and A1, B and B1 interface motors are

connected in parallel, and their motion pattern is the same. 8 jumper caps

can be used to control the rotation direction of the 4 motor interfaces. For

example, when the two jumper caps in front of the motor A interface are

changed from a horizontal connection to a vertical connection, the

rotation direction of the motor A now is opposite to the original rotation

direction.

(2)Circuit

 171

(2）Parameters：

⚫ Logic part input voltage: DC 5V

⚫ Driving part input voltage: DC 7-12V

⚫ Logic part working current: ≤36mA

⚫ Driving part working current: ≤ 2A

⚫ Maximum dissipation power: 25W (T=75℃)

⚫ Control signal input level:

High level: 2.3V ≤ Vin ≤ 5V

Low level: 0V ≤ Vin ≤ 1.5V

⚫ Working temperature: -25℃～＋130℃

(4)Drive the robot to move

From the circuit above, it is known that for motor A D4 is its direction pin

and D5 the speed pin while for motor B D2 is its direction pin and D8 the

speed pin.

According to the table below, we can know how to control the movement

of the robot by controlling the rotation of two motors through the digital

ports and PWM ports . Among them, the range of PWM value is 0-255. The

larger the value is, the faster the motor rotates.

 172

Movements D4
D5

（PWM）

Motor（on the

left）
D2 D9（PWM）

Motor（on the

right）

Move

Forward
LOW 200

Rotate

Clockwise

LO

W
200

Rotate

Clockwise

Step Back
HIG

H
200

Rotate

Anticlockwise

HIG

H
200

Rotate

Anticlockwise

Rotate

Right

HIG

H
200

Rotate

Anticlockwise

LO

W
200

Rotate

Clockwise

Rotate

Right
LOW 200

Rotate

Clockwise

HIG

H
200

Rotate

Anticlockwise

Stop / 0 Stop / 0 Stop

(5)Components Needed:

Keyestudio

V4.0

Development

Board *1

Keyestudio

L298P Motor

Driver Shield

Tank Robot Chass

is
 USB Cable*1

 173

(6)Connection Diagram:

Note:

There is a silk screen 1234 on the front of the 4pin connector. One of the

two motors should be connected with pin A (marked as the right one)and

the other with pin B(marked as the left one).

 174

(7)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 11.1

 motor driver

 http://www.keyestudio.com

*/

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

void setup()

{

 pinMode(ML_Ctrl, OUTPUT);//Define the direction control pin of the left

motor as output

 pinMode(ML_PWM, OUTPUT);//Define the PWM control pin of the left

motor as output

 pinMode(MR_Ctrl, OUTPUT);//Define the direction control pin of the

right motor as output

 pinMode(MR_PWM, OUTPUT);//Define the PWM control pin of the right

 175

motor as output

}

void loop()

{

 digitalWrite(ML_Ctrl, LOW); //The left motor direction control pin is in

low level

 analogWrite(ML_PWM, 200); //The PWM control speed of the left motor

is 200

 digitalWrite(MR_Ctrl, LOW); //The right motor direction control pin is in

low level

 analogWrite(MR_PWM, 200); //The PWM control speed of the right

motor is 200

 //front

 delay(2000);//Delay in 2s

 digitalWrite(ML_Ctrl, HIGH); //The left motor direction control pin is in

high level

 analogWrite(ML_PWM, 200); //The PWM control speed of the left motor

is 200

 digitalWrite(MR_Ctrl, HIGH); //The right motor direction control pin is in

high level

 analogWrite(MR_PWM, 200); //The PWM control speed of the right

 176

motor is 200

 //back

 delay(2000);//Delay in 2s

 digitalWrite(ML_Ctrl, HIGH); //The left motor direction control pin is in

high level

 analogWrite(ML_PWM, 200); //The PWM control speed of the left motor

is 200

 digitalWrite(MR_Ctrl, LOW); //The right motor direction control pin is in

low level

 analogWrite(MR_PWM, 200); //The PWM control speed of the right

motor is 200

 //left

 delay(2000);//Delay in 2s

 digitalWrite(ML_Ctrl, LOW); //The left motor direction control pin is in

low level

 analogWrite(ML_PWM, 200); //The PWM control speed of the left motor

is 200

 digitalWrite(MR_Ctrl, HIGH); //The right motor direction control pin is in

high level

 analogWrite(MR_PWM, 200); //The PWM control speed of the right

motor is 200

 //right

 177

 delay(2000);//Delay in 2s

 analogWrite(ML_PWM, 0); //The PWM control speed of the left motor is

0

 analogWrite(MR_PWM, 0); //The PWM control speed of the right motor

is 0

 //stop

 delay(2000);//Delay in 2s

}

//***

(8) Test Results:

After wiring according to the diagram, uploading the test code and

powering it up, the smart car moves forward for 2s, steps back for 2s, turns

left for 2s, turns right for 2s and stops for 2s and repeats this sequence.

(9) Code Explanation

digitalWrite(ML_Ctrl,LOW);

The change between high and low levels can makes motors to rotate

clockwise or anticlockwise. General digital pins can be used to control

these movements.

 178

 analogWrite(ML_PWM,200);

The speed adjustment of the motor is realized by PWM, and the pin that

controls the speed of the motor must be the PWM pin of Arduino.

(10)Expansion Project:

We adjust the speed of motors by controlling PWM and the wiring remains

the same.

/*

 keyestudio Mini Tank Robot V3

 lesson 11.2

 motor driver pwm

 http://www.keyestudio.com

*/

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

void setup() {

 pinMode(ML_Ctrl, OUTPUT);//Define the direction control pin of the left

motor as output

 pinMode(ML_PWM, OUTPUT);//Define the PWM control pin of the left

 179

motor as output

 pinMode(MR_Ctrl, OUTPUT);//Define the direction control pin of the

right motor as output

 pinMode(MR_PWM, OUTPUT);//Define the PWM control pin of the right

motor as output

}

void loop() {

 digitalWrite(ML_Ctrl, LOW); //The left motor direction control pin is in

low level

 analogWrite(ML_PWM, 100); //The PWM control speed of the left motor

is 100

 digitalWrite(MR_Ctrl, LOW); //The right motor direction control pin is in

low level

 analogWrite(MR_PWM, 100); //The PWM control speed of the right

motor is 100

 //front

 delay(2000);//Delay in 2s

 digitalWrite(ML_Ctrl, HIGH); //The left motor direction control pin is in

high level

 analogWrite(ML_PWM, 100); //The PWM control speed of the left motor

is 100

 digitalWrite(MR_Ctrl, HIGH); //The right motor direction control pin is in

 180

high level

 analogWrite(MR_PWM, 100); //The PWM control speed of the right

motor is 100

 //back

 delay(2000);//Delay in 2s

 digitalWrite(ML_Ctrl, HIGH); //The left motor direction control pin is in

high level

 analogWrite(ML_PWM, 100); //The PWM control speed of the left motor

is 100

 digitalWrite(MR_Ctrl, LOW); //The right motor direction control pin is in

low level

 analogWrite(MR_PWM, 100); //The PWM control speed of the right

motor is 100

 //left

 delay(2000);//Delay in 2s

 digitalWrite(ML_Ctrl, LOW); //The left motor direction control pin is in

low level

 analogWrite(ML_PWM, 100); //The PWM control speed of the left motor

is 100

 digitalWrite(MR_Ctrl, HIGH); //The right motor direction control pin is in

high level

 analogWrite(MR_PWM, 100); //The PWM control speed of the right

 181

motor is 100

 //right

 delay(2000);//Delay in 2s

 analogWrite(ML_PWM, 0); //The PWM control speed of the left motor is

0

 analogWrite(MR_PWM, 0); //The PWM control speed of the right motor

is 0

 //stop

 delay(2000);//Delay in 2s

}

//**

Note: if the battery power is too low, the motors could move in a low speed

and fail to turn around.

 182

Project 12: 8*16 Facial Expression LED Dot Matrix

(1)Description:

Won’t it be interesting if an expression board is added to the robot? And

the Keyestudio 8*16 LED dot matrix can do the trick. With the help

of it, you could design facial expressions, images, patterns and

other displays by yourselves.

The 8*16 LED board comes with 128 LEDs. The data of the microprocessor

(Arduino) communicates with the AiP1640 through a two-wire bus

interface. Therefore, it can control the on and off of 128 LEDs on the

module, so as to make the dot matrix on the module to display the pattern

you need. A HX-2.54 4Pin cable is provided for your convenience of wiring.

(2）Parameters：

⚫ Working voltage: DC 3.3-5V

⚫ Power loss: 400mW

⚫ Oscillation frequency: 450KHz

⚫ Drive current: 200mA

⚫ Working temperature: -40~80℃

⚫ Communication mode: two-wire bus

 183

(3)Components Needed:

Keyestudio

V4.0

Development

Board *1

Keyestudio

L298P Motor

Driver Shield*1

keyestudio

8x16 LED

Dot Matrix*1

4P HX-2.54 Dupont

Wire

(Black-Red-White-B

rown)

 USB cable*1

 184

(4)About the 8*16 Dot Matrix

Circuit of the 8*16 LED dot matrix

Principle of the 8*16 LED dot matrix

How to control each LED of the 8*16 dot matrix? It is known that each byte

has 8 bits and each bit is 0 or 1. when it is 0, LED is off while when it is 1 LED

is on. One byte can control one column of the LED,and naturally 16 bytes

can control 16 columns of LEDs, that’s the 8*16 dot matrix.

Pins description and communication protocol

The data of the microprocessor (Arduino) communicates with the AiP1640

through a two-wire bus cable.

The communication protocol diagram is as follows (SCLK) is SCL, (DIN) is

SDA

 185

①The starting condition for data input: SCL is high level and SDA changes

from high to low.

②For data command setting, there are methods as shown in the figure

below

In our sample program, select the way to add 1 to the address

automatically, the binary value is 0100 0000 and the corresponding

hexadecimal value is 0x40

③For address command setting, the address can be selected as shown

below.

The first 00H is selected in our sample program, and the binary number

1100 0000 corresponds to the hexadecimal 0xc0

Description

add 1 to the address

automatically

Fixed address

Universal mode

Test mode

Irrelevant

choice,

 fill in 0

Irrelevant

choice,

 fill in 0

 186

④The requirement for data input is that when SCL is at high level when

inputting data, the signal on SDA must remain unchanged. Only when the

clock signal on SCL is at low level, can the signal on SDA be changed. The

input of data is the low bit first, and the high bit later.

⑤The condition for the end of data transmission is that when SCL is at low

level, SDA at low level and SCL at high level, the level of SDA becomes high.

⑥Display control, set different pulse width, pulse width can be selected as

Irrelevant

choice,

fill in 0

Display address

 187

shown in the figure below

In the example, the pulse width is 4/16, and the hexadecimal

corresponding to 1000 1010 is 0x8A

4. Instructions for the use of modulus tool

The dot matrix tool uses the online version, and the link is :

http://dotmatrixtool.com/#

①Enter the link and the page appears as shown below

On

off

Set pulse width to 1/16

Set pulse width to 2/16

Set pulse width to 4/16

Set pulse width to 10/16

Set pulse width to 11/16

Set pulse width to 12/16

Set pulse width to 13/16

Set pulse width to 14/16

Irrelevant

choice,

fill in 0

Display switch

setting

Description Function

Clear quantity

setting

(Brightness

setting)

 188

②The dot matrix is 8*16, so adjust the height to 8 and width to 16, as

shown in the figure below

③Generate hexadecimal data from the pattern

 189

As shown in the figure below, press the left mouse button to select, right

click to cancel; draw the pattern you want, click Generate, and the

hexadecimal data we need will be generated.

(5)Connection Diagram:

 190

The GND, VCC, SDA, and SCL of the 8x16 LED light board are respectively

connected to the keyestudio sensor expansion board-(GND), + (VCC), A4,

A5 for two-wire serial communication.

(Note: though it is connected with the IIC pin of Arduino, this module is not

for IIC communication. And the IO port here is to simulate I2C

communication and can be connected with any two pins)

(6)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 12.1

 Matrix face

 http://www.keyestudio.com

*/

//get the data of smile image from a modulus tool

unsigned char smile[] = {0x00, 0x00, 0x1c, 0x02, 0x02, 0x02, 0x5c, 0x40,

0x40, 0x5c, 0x02, 0x02, 0x02, 0x1c, 0x00, 0x00};

#define SCL_Pin A5 //set a pin of clock to A5

#define SDA_Pin A4 //set a data pin to A4

void setup() {

 191

 //set the pin to OUTPUT

 pinMode(SCL_Pin, OUTPUT);

 pinMode(SDA_Pin, OUTPUT);

 //clear screen

 //matrix_display(clear);

}

void loop() {

 matrix_display(smile); //display the smile image

}

//this function is used for the display of dot matrix

void matrix_display(unsigned char matrix_value[])

{

 IIC_start(); //use the function to start transmitting data

 IIC_send(0xc0); //select an address

 for (int i = 0; i < 16; i++) //image data have 16 characters

 {

 IIC_send(matrix_value[i]); //data to transmit pictures

 }

 IIC_end(); //end the data transmission of pictures

 192

 IIC_start();

 IIC_send(0x8A); //show control and select pulse width 4/16

 IIC_end();

}

//the condition that data starts transmitting

void IIC_start()

{

 digitalWrite(SDA_Pin, HIGH);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW);

}

//the sign that transmission of data ends

void IIC_end()

{

 digitalWrite(SCL_Pin, LOW);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 193

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, HIGH);

 delayMicroseconds(3);

}

//transmit data

void IIC_send(unsigned char send_data)

{

 for (byte mask = 0x01; mask != 0; mask <<= 1) //ecah character has 8

digits, which is detected one by one

 {

 if (send_data & mask) { // set high or low levels in light of each bit(0 or

1)

 digitalWrite(SDA_Pin, HIGH);

 } else {

 digitalWrite(SDA_Pin, LOW);

 }

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH); //pull up the clock pin SCL_Pin to end the

transmission of data

 delayMicroseconds(3);

 194

 digitalWrite(SCL_Pin, LOW); //pull down the clock pin SCL_Pin to

change signals of SDA

 }

}

(7)Test Results:

After uploading the test code successfully, connecting according to the

wiring diagram, dialing the DIP switch to the right end and powering it on,

a smile-shaped pattern shows on the dot matrix.

 195

(8)Expansion Project:

We use the modulus tool we just learned, http://dotmatrixtool.com/#, to

make the dot matrix display the pattern start , going forward, and stop and

then clear the pattern. The time interval is 2000 ms.

Code obtained from the module tool：

Code for the pattern start:

0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x80,0x40,0x20,0x10,0x08,0x04,

0x02,0x01

Code for the pattern going forward:

0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00

Code for the pattern stepping back:

0x00,0x00,0x00,0x00,0x00,0x24,0x48,0x90,0x48,0x24,0x00,0x00,0x00,0x00,

0x00,0x00

Code for the pattern turning left：

0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00

 196

Code for the pattern turning right：

0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,

0x00,0x00

Code for the pattern stop：

0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A,

0x0E,0x00

Code to clear screen：

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00

Complete code:

/*

 keyestudio Mini Tank Robot V3

 lesson 12.2

 Matrix face

 http://www.keyestudio.com

*/

//Array, used to save data of images, can be calculated by yourself or

gotten from modulus tool

 197

unsigned char start01[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

unsigned char front[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x12, 0x09,

0x12, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char back[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x48, 0x90,

0x48, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char left[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x28, 0x10,

0x44, 0x28, 0x10, 0x44, 0x28, 0x10, 0x00};

unsigned char right[] = {0x00, 0x10, 0x28, 0x44, 0x10, 0x28, 0x44, 0x10,

0x28, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char STOP01[] = {0x2E, 0x2A, 0x3A, 0x00, 0x02, 0x3E, 0x02, 0x00,

0x3E, 0x22, 0x3E, 0x00, 0x3E, 0x0A, 0x0E, 0x00};

unsigned char clear[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

#define SCL_Pin A5 //set a pin of clock to A5

#define SDA_Pin A4 //set a data pin to A4

void setup() {

 //set the pin to OUTPUT

 pinMode(SCL_Pin, OUTPUT);

 pinMode(SDA_Pin, OUTPUT);

 198

 //clear screen

 matrix_display(clear);

}

void loop() {

 matrix_display(start01); //show "Start" image

 delay(2000);

 matrix_display(front); //show "front" image

 delay(2000);

 matrix_display(STOP01); //show "STOP01" image

 delay(2000);

 matrix_display(clear); //show "clear" image

 delay(2000);

}

//this function is used for the display of dot matrix

void matrix_display(unsigned char matrix_value[])

{

 IIC_start(); //use the function to start transmitting data

 IIC_send(0xc0); //select an address

 for (int i = 0; i < 16; i++) //image data have 16 characters

 {

 IIC_send(matrix_value[i]); //data to transmit pictures

 199

 }

 IIC_end(); //end the data transmission of pictures

 IIC_start();

 IIC_send(0x8A); //show control and select pulse width 4/16

 IIC_end();

}

//the condition that data starts transmitting

void IIC_start()

{

 digitalWrite(SDA_Pin, HIGH);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW);

}

//the sign that transmission of data ends

void IIC_end()

 200

{

 digitalWrite(SCL_Pin, LOW);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, HIGH);

 delayMicroseconds(3);

}

//transmit data

void IIC_send(unsigned char send_data)

{

 for (byte mask = 0x01; mask != 0; mask <<= 1) //ecah character has 8

digits, which is detected one by one

 {

 if (send_data & mask) { //set high or low levels in light of each bit(0 or

1)

 digitalWrite(SDA_Pin, HIGH);

 } else {

 digitalWrite(SDA_Pin, LOW);

 }

 201

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH); //pull up the clock pin SCL_Pin to end the

transmission of data

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW); //pull down the clock pin SCL_Pin to

change signals of SDA

 }

}

After uploading test code,the facial expression board shows these patterns

orderly and repeats this sequence.

 202

Project 13: Light-following Tank

(1)Description:

In previous projects, we introduced in detail the use of various sensors,

modules, and expansion boards on the smart car. Now let’s move to the

projects of the smart car . The light-following smart cars, as the name

suggests, is a smart car that can follow the light.

 203

We can combine the knowledge from projects photoresistor and motor

drive to make a light-seeking smart car. In the project, we use two

photoresistor modules to detect the light intensity on the left and right

sides of the smart car, read the corresponding analog values, and then

control the rotation of the two motors based on these two data so as,to

control the movements of the smart car.

The specific logic of the light-following smart car is shown as below.

Detection (the

bigger the

brightness,the

bigger the

value)

photoresistor

module on the left
left_light

photoresistor

module on the

right

right_light

Condition left_light＞650 and right_light＞650

Movement Move forward（set PWM to 200）

Condition left_light＞650 and right_light≤650

Movement Rotate left（set PWM to 200）

Condition left_light≤650 and right_light＞650

Movement Rotate right（set PWM to 200）

Condition left_light≤650 and right_light≤650

Movement stop

 204

(2) Flow chart

Start

Analog values of
left and right

photoresistors

Left one 650

Right one 650
NO

YES

Go froward
Left one＞650

Right one 650

Turn left

YES

NO

Turn right

Right one＞650

Left one 650

YES

Stop

NO

 205

(3)Connection Diagram:

Note: The "-", "+" and S pins of the photoresistor module on the left are

connected to G (GND), V (VCC), A0 respectively;

the "-", "+" and S pins of the photoresistor module on the right are

connected to the G (GND), V (VCC), and A1 respectively.

There is a silk screen 1234 on the front of the 4pin cable. The red wire of

the rear right motor is connected to 1, the black wire is connected to 2, the

black wire of the front left motor is connected to 4, and the red wire is

connected to 3.

 206

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 13

 light follow tank

 http://www.keyestudio.com

*/

#define light_L_Pin A0 //Define the pin of the photosensitive sensor on

the left

#define light_R_Pin A1 //Define the pin of the photosensitive sensor on

the right

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

int left_light;

int right_light;

void setup() {

 Serial.begin(9600);

 pinMode(light_L_Pin, INPUT);

 pinMode(light_R_Pin, INPUT);

 207

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

}

void loop() {

 left_light = analogRead(light_L_Pin);

 right_light = analogRead(light_R_Pin);

 Serial.print("left_light_value = ");

 Serial.println(left_light);

 Serial.print("right_light_value = ");

 Serial.println(right_light);

 if (left_light > 650 && right_light > 650) //Range value detected by the

photosensitive sensor,move forward

 {

 Car_front();

 }

 else if (left_light > 650 && right_light <= 650) //Range value detected

by the photosensitive sensor,turn left

 {

 Car_left();

 }

 208

 else if (left_light <= 650 && right_light > 650) //Range value detected by

the photosensitive sensor,turn right

 {

 Car_right();

 }

 else //In other conditions stop

 {

 Car_Stop();

 }

}

void Car_front()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_left()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 209

 analogWrite(ML_PWM, 200);

}

void Car_right()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_Stop()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

}

//**

(5)Test Results:

After uploading the test code successfully, connecting according to the

wiring diagram, dialing the DIP switch to the right end and powering it on,

the smart car follows the light to move.

 210

Project 14: Ultrasonic Sound-following Tank

(1) Description:

In the previous lesson, we learned about the light-following smart car. And

in this lesson, we can combine the knowledge to make an ultrasonic

sound-following car. In the project, we use ultrasonic sensors to detect the

distance between the car and the obstacle in front, and then control the

 211

rotation of the two motors based on this data so as to control the

movements of the smart car.

The specific logic of the ultrasonic sound- following smart car is shown in

the table blow:

Detection

The distance

between the car

and the obstacle

front

Distance

（unit：cm）

Setting Set the angle of the servo to 90°

Condition distance≥20 and distance≤60

Movement （set PWM to 200）

Condition
distance＞10 and distance＜20

distance＞60

Movement Stop

Condition distance≤10

Movement Move back（set PWM to 200）

 212

(2)Flow chart

Start

The distance
away from the

obstacle

20cm distance

 60cm ？
NO

YES

Go forward
10cm ＜distance

＜20cm ？

Stop

YES

NO

Go back

distance ＜

10cm？

YES

Stop

NO

 213

(3)Connection Diagram:

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 14

 Ultrasonic follow tank

 http://www.keyestudio.com

 214

*/

#define servoPin 10 //The pin of servo

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

#define Trig 12

#define Echo 13

float distance;

void setup() {

 pinMode(servoPin, OUTPUT);

 pinMode(Trig, OUTPUT);

 pinMode(Echo, INPUT);

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 procedure(90); //Set the angle of the servo to 90°

 delay(500); //Delay in 500ms

}

 215

void loop() {

 distance = checkdistance(); //Assign the distance measured by

ultrasonic sound to distance

 if (distance >= 20 && distance <= 60) //The distance range to go

upward

 {

 Car_front();

 }

 else if (distance > 10 && distance < 20) //The distance range to stop

 {

 Car_Stop();

 }

 else if (distance <= 10) //The distance range to Move forward

 {

 Car_back();

 }

 else //In other conditions, it stops

 {

 Car_Stop();

 }

}

void Car_front()

 216

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_back()

{

 digitalWrite(MR_Ctrl,HIGH);

 analogWrite(MR_PWM,200);

 digitalWrite(ML_Ctrl,HIGH);

 analogWrite(ML_PWM,200);

}

void Car_left()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

}

void Car_right()

{

 217

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_Stop()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

}

//The function controls servos

void procedure(byte myangle) {

 int pulsewidth;

 for (int i = 0; i < 5; i++) {

 pulsewidth = myangle * 11 + 500; //Calculate the value of pulse

width

 digitalWrite(servoPin, HIGH);

 delayMicroseconds(pulsewidth); //The time in high level represents

the pulse width

 218

 digitalWrite(servoPin, LOW);

 delay((20 - pulsewidth / 1000)); //As the cycle is 20ms, the time left is

in low level

 }

}

//The function controls ultrasonic sound

float checkdistance() {

 static float distance;

 digitalWrite(Trig, LOW);

 delayMicroseconds(2);

 digitalWrite(Trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(Trig, LOW);

 distance = pulseIn(Echo, HIGH) / 58.20; //The 58.20 here comes from

2*29.1=58.2

 delay(10);

 return distance;

}

//**

 219

(5)Test Results:

After uploading the test code successfully, connecting according to the

wiring diagram, dialing the DIP switch to the right end, powering it on, and

setting the servo to 9°，the smart car moves with the obstacle.

Project 15: Ultrasonic Obstacle Avoidance Tank

 220

(1) Description:

In the previous project, we made an ultrasonic sound-following smart car.

In fact, using the same components and the same wiring method, we only

need to change the test code to turn it into an ultrasonic obstacle

avoidance smart car. This smart car can move with the movement of the

human hands. We use ultrasonic sensors to detect the distance between

the smart car and the obstacle in front, and then control the rotation of the

two motors based on this data so as to control the movements of the smart

car.

Detection

Distance measured by the

ultrasonic senor between the car

and the obstacle in front

（set the angle of the servo to

90°）

a

（unit：cm）

Distance measured by the

ultrasonic senor between the car

and the obstacle on the right

（set the angle of the servo to

20°）

a2

（unit：cm）

 221

Distance measured by the

ultrasonic senor between the car

and the obstacle on the left

（set the angle of the servo to

160°）

a1

（unit：cm）

Setting set the starting angle of the servo to 90°

Condition

1
Movement

a＜20

Stop for 1000 ms；set the angle of the servo to 160°，

read a1，delay in 500ms；set the angle of the servo to

20°，read a2，delay in 500ms.

Condition

2
Movement

a1＜50

or

a2＜50

Compare a1 with a2

Condition

3
Movement

a1＞a2

Set the angle of the servo to

90°，rotate left for 500ms（set

PWM to 255 ） ， and move

forward（set PWM to 200）.

a1＜a2
Set the angle of the servo to

90°，rotate right for 500ms（set

 222

The specific logic of the ultrasonic obstacle avoidance smart car is shown in

the table blow:

PWM to 255 ） ， and move

forward（set PWM to 200）.

Condition

2
Movement

a1≥50

and

a2≥50

Random

set the angle of the servo to

90°，rotate left for 500ms（set

PWM to 255 ） ， and move

forward（set PWM to 200）.

set the angle of the servo to

90°，rotate right for 500ms（set

PWM to 255 ） ， and move

forward（set PWM to 200）.

Condition

2
Movement

a≥20 move forward（set PWM to 200）

 223

(2)Flow chart

Start

The distance
away from the

obstacle

Distance＜

20cm？
NO

Go forward
Car stops and detect the

left distance

YES

Then detect the right
distance and servo

rotates to 90°

Left distance＞

right distance？

NO

NO

Turn left for
700ms

Turn right fir
700ms

 224

(3)Connection Diagram:

(Note: the “-”, “+” and S pins of the servo are respectively connected

to G (GND), V (VCC) and D10 of the expansion board；and for the ultrasonic

sensor,the VCC pin is connected to the 5v (V) ,the Trig pin to digital 12 (S),

the Echo pin to digital 13 (S), and the Gnd pin to Gnd (G); the same as last

project.）

 225

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 15

 Ultrasonic avoid tank

 http://www.keyestudio.com

*/

#define servoPin 10 //The pin of servo

int a, a1, a2;

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

#define Trig 12

#define Echo 13

float distance;

void setup() {

 Serial.begin(9600);

 pinMode(servoPin, OUTPUT);

 pinMode(Trig, OUTPUT);

 226

 pinMode(Echo, INPUT);

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 procedure(90); //Set the angle of the servo to 90°

 delay(500); //Delay in 500ms

}

void loop() {

 a = checkdistance(); //Assign the distance to the front detected by

ultrasonic sensor to the variable a

 if (a < 20) {//When the distance to the front is less than 20cm

 Car_Stop(); //The robot stops

 delay(500); //Delay in 500ms

 procedure(180); //Ultrasonic pan-tilt turns left

 delay(500); //Delay in 500ms

 a1 = checkdistance(); //Assign the distance to the left detected by

ultrasonic sensor to the variable a1

 delay(100); //

 procedure(0); //Ultrasonic pan-tilt turns right

 227

 delay(500); //Delay in 500ms

 a2 = checkdistance(); //Assign the distance to the right detected by

ultrasonic sensor to the variable a2

 delay(100); //

 procedure(90); //Back to 90°

 delay(500);

 if (a1 > a2) { //When the distance to the left is bigger than to the right

 Car_left(); //The robot turns left

 delay(700); //It turns left for 700ms

 } else {

 Car_right(); //The robot turns right

 delay(700);

 }

 }

 else { //When the distance to the front is >=20c，the robot moves

forward

 Car_front(); //Move forward

 }

}

 228

void Car_front()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_back()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

}

void Car_left()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

}

void Car_right()

 229

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_Stop()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

}

//The function controls servos

void procedure(byte myangle) {

 int pulsewidth;

 for (int i = 0; i < 5; i++) {

 pulsewidth = myangle * 11 + 500; //Calculate the value of pulse

width

 digitalWrite(servoPin, HIGH);

 delayMicroseconds(pulsewidth); //The time in high level represents

 230

the pulse width

 digitalWrite(servoPin, LOW);

 delay((20 - pulsewidth / 1000)); //As the cycle is 20ms, the time left is

in low level

 }

}

//The function controls ultrasonic sound

float checkdistance() {

 float distance;

 digitalWrite(Trig, LOW);

 delayMicroseconds(2);

 digitalWrite(Trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(Trig, LOW);

 distance = pulseIn(Echo, HIGH) / 58.20; //The 58.20 here comes from

2*29.1=58.2

 delay(10);

 return distance;

}

//**

 231

(5)Test Results:

After uploading the test code successfully, connecting according to the

wiring diagram, dialing the DIP switch to the right end, and powering it on,

the smart car moves forward and it automatically avoid obstacles.

Project 16: Move-in-Confined-Space Tank

 232

(1)Description:

The ultrasonic sound-following and obstacle avoidance functions of the

smart car have been introduced in previous projects. Here we intend to

combine the knowledge in the previous courses to confine the smart car to

move in a certain space. In the experiment, we use the line-tracking sensor

to detect whether there is a black line around the smart car, and then

control the rotation of the two motors according to the detection results,

so as to lock the smart car in a circle drawn in black line.

The specific logic of the line-tracking smart car is shown in the table blow:

Detection

Line-tracking sensor

in the middle

Black line detected: in high

level

White line detected: in low

level

Line-tracking sensor

on the left

Black line detected: in high

level

White line detected: in low

level

Line-tracking sensor

on the right

Black line detected: in high

level

White line detected: in low

 233

level

Condition Movement

All the three line-tracking sensors detect

no black lines

Move forward

（set PWM to

200）

Any of the three line-tracking sensors

detects black lines

Step back（set

PWM to 200）

Then rotate left

（set PWM to

200）

(2)Flow chart

Start

read the value of
the middle line
tracking sensor

 The values of three

sensors =0？

YES

NO

Go forward
Go back and turn

left

YES

 234

(3)Connection Diagram:

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 16

 draw a circle for tank

 http://www.keyestudio.com

 235

*/

//The wiring of line tracking sensor

#define L_pin 6 //On the left#define M_pin 7 //In the middle

#define R_pin 8 //On the right

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

int L_val, M_val, R_val;

void setup()

{

 Serial.begin(9600); //Set the baud rate to 9600

 pinMode(L_pin, INPUT); //Set all pins of the line tracking sensor as input

mode

 pinMode(M_pin, INPUT);

 pinMode(R_pin, INPUT);

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 236

 pinMode(MR_PWM, OUTPUT);

}

void loop () {

 L_val = digitalRead(L_pin); //Read the value of the left sensor

 M_val = digitalRead(M_pin); //Read the value of the middle sensor

 R_val = digitalRead(R_pin); //Read the value of the right sensor

 if (L_val == 0 && M_val == 0 && R_val == 0) { //When no black lines

detected,it moves forward

 Car_front();

 }

 else { //Otherwise,if any line-following sensor detects the black line it

turns back and then turns left

 Car_back();

 delay(700);

 Car_left();

 delay(800);

 }

}

void Car_front()

{

 237

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_back()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

}

void Car_left()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

}

void Car_right()

{

 digitalWrite(MR_Ctrl, HIGH);

 238

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_Stop()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

}

 //**

(5)Test Results:

After uploading the test code successfully and powering it up, the smart

car moves in a confined space, the circle drawn in black line.

 239

Project 17:Line-tracking Tank

(1)Description:

The previous project has introduced how to confine the smart car to

move in a certain space. In this project, we could use the knowledge

learned before to make it a line-tracking smart car. In the experiment, we

use the line-tracking sensor to detect whether there is a black line around

 240

the smart car, and then control the rotation of the two motors according to

the detection results, so as to make the smart car to move along the black

line.

The specific logic of the line-tracking smart car is shown in the table blow:

Detection

Line-tracking sensor

in the middle

Black line detected: in high

level

White line detected: in low

level

Line-tracking sensor

on the left

Black line detected: in high

level

White line detected: in low

level

Line-tracking sensor

on the right

Black line detected: in high

level

White line detected: in low

level

Condition Movement

Line-tracking

sensor in the

Line-tracking sensor

on the left detects

Rotate left（set

PWM to 200）

 241

middle detects the

black line

the black line and

the one on the right

detects white lines

Line-tracking sensor

on the left detects

white lines and the

one on the right

detects the black line

Rotate right（set

PWM to 200）

Both the left and

right line-tracking

sensors detect white

lines
Move forward

Both the left and

right line-tracking

sensors detect

the black line

Line-tracking

sensor in the

middle detects

white lines

Line-tracking sensor

on the left detects

the black line and

the one on the

right detects white

lines

Rotate left（set

PWM to 200）

 242

Line-tracking sensor

on the left detects

white lines and the

one on the right

detects the black

line

Rotate right（set

PWM to 200）

Both the left and

right

line-tracking

sensors detect

white lines Stop

Both the left and

right line-tracking

sensors detect

the black line

 243

(2) Flow chart

Start

Read values of let
and right sensors

The value of the
middle on is 1?

YES

NO

Left/ right=1 or

Left/ right=0？

Go forward

YES

NO

Left =1，Right=0？

Turn left Turn right

YES

NO

Left/ right=1 or

Left/ right=0？

Stop

YES

Left=1，right=0？

YES

Turn leftTurn right

NO

 244

(3)Connection Diagram:

Note: it is the same as last project.

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 17

 245

 Line track tank

 http://www.keyestudio.com

*/

//The wiring of line tracking sensor

#define L_pin 6 //On the left

#define M_pin 7 //In the middle

#define R_pin 8 //On the right

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

int L_val, M_val, R_val;

void setup()

{

 Serial.begin(9600); //Set the baud rate to 9600

 pinMode(L_pin, INPUT); //Set all pins of the line tracking sensor as input

mode

 pinMode(M_pin, INPUT);

 pinMode(R_pin, INPUT);

 246

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

}

void loop () {

 L_val = digitalRead(L_pin); //Read the value of the left sensor

 M_val = digitalRead(M_pin); //Read the value of the middle sensor

 R_val = digitalRead(R_pin); //Read the value of the right sensor

 if (M_val == 1) { //Black line is detected in the middle

 if (L_val == 1 && R_val == 0) { //If a black line is detected on the left

and not on the right, it turns left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //If a black line is detected on the

right while no lines on the left, it turns right

 Car_right();

 }

 else { //Or it moves forward

 Car_front();

 }

 247

 }

 else { //No lines detected in the middle

 if (L_val == 1 && R_val == 0) { //If a black line is detected on the left

and not on the right, it turns left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //If a black line is detected on the

right while no lines on the left, it urns right

 Car_right();

 }

 else { //Otherwise, it stops

 Car_Stop();

 }

 }

}

//Move forward

void Car_front()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 150);

 digitalWrite(ML_Ctrl, LOW);

 248

 analogWrite(ML_PWM, 150);

}

//Turn back

void Car_back()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 150);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 150);

}

//Turn left

void Car_left()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 250);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 100);

}

//Turn right

void Car_right()

{

 digitalWrite(MR_Ctrl, HIGH);

 249

 analogWrite(MR_PWM, 100);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 250);

}

//Stop

void Car_Stop()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

}

 //**.

(5)Test Results:

After uploading the test code successfully and powering it up, the smart

car moves along the black line.

 250

Project 18: Fire Extinguishing Tank

(1)Description:

The line-tracking function of the smart tank has been explained in the

previous project. And in this project we use the flame sensor to make a fire

extinguishing robot. When the car encounters flames, the motor of the fan

will rotate to blow out the fire. Of course, we need to replace the ultrasonic

 251

sensor and two photoresistors with a fan module and flame sensors first.

The specific logic of the line-tracking smart car is shown in the table blow:

Flame sensors Line-tracking sensors
The status of the car

and the fan

On the

left

On the

right

On the

left

In the

middle

On the

right
/

The

analog

value ≥

700

The

analog

value≤700

/ / / Stop，turn on the fan

The

analog

value>700

The

analog

value<700

/ / / Stop，turn on the fan

The

analog

value≤700

The

analog

value>700

/ / / Stop，turn on the fan

The

analog

value>700

The

analog

value>700

/ / /
Turn off the fan and

continue following line

 252

(3) Flow chart

Start

Read values of two
flame sensors

The value of the left one<700 or

the value of the right one <700？

Car stops and
enable the fan

YES

NO

Fan stops, and
move along the

black line

 253

(3)Connection Diagram:

Note: the GND, VCC, SDA, and SCL of the 8x16 LED dot matrix are

respectively connected to-(GND), + (VCC), SDA, SCL on the expansion

board of V5 ;

The "-", "+" and S pins of the infrared receiving sensor are respectively

connected to the G (GND), V (VCC), A0 of the expansion board with wires.

When the digital port is not enough, the analog port can be used as a

digital port, and analog port A0 is equivalent to digital port 14, A1 is

equivalent to digital port 15, and so on.

 254

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 18

 Fire extinguishing tank

 http://www.keyestudio.com

*/

/*

 keyestudio Mini Tank Robot V3

 lesson 18

 Fire extinguishing tank

 http://www.keyestudio.com

*/

int flame_L = A0; //Define the flame interface on the left as the analog pin

A0

int flame_R = A1; //Define the flame interface on the right as the analog

pin A1

//The wiring of line tracking sensor

#define L_pin 6 //On the left

#define M_pin 7 //In the middle

 255

#define R_pin 8 //On the right

//The pin of the servo 130

int INA = 12;

int INB = 13;

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

int L_val, M_val, R_val, flame_valL, flame_valR;

void setup()

{

 Serial.begin(9600);

 //Set all pins of the line tracking sensor as input mode

 pinMode(L_pin, INPUT);

 pinMode(M_pin, INPUT);

 pinMode(R_pin, INPUT);

 //Define the flame as INPUT

 pinMode(flame_L, INPUT);

 pinMode(flame_R, INPUT);

 //Define the motor as OUTPUT

 pinMode(ML_Ctrl, OUTPUT);

 256

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 pinMode(INA, OUTPUT);//Set digital port INA as OUTPUT

 pinMode(INB, OUTPUT);//Set digital port INB as OUTPUT

}

void loop () {

 //Read the analog value of the flame sensors

 flame_valL = analogRead(flame_L);

 flame_valR = analogRead(flame_R);

// Serial.print(flame_valL);

// Serial.print(" ");

// Serial.print(flame_valR);

// Serial.println(" ");

// delay(500);

 if (flame_valL <= 700 || flame_valR <= 700) {

 Car_Stop();

 fan_begin();

 } else {

 fan_stop();

 L_val = digitalRead(L_pin); //Read the value of the left sensor

 257

 M_val = digitalRead(M_pin); //Read the value of the middle sensor

 R_val = digitalRead(R_pin); //Read the value of the right sensor

 if (M_val == 1) { //the middle one detects the black line

 if (L_val == 1 && R_val == 0) { //If a black line is detected on the left

and not on the right, it turns left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //If a black line is detected on the

right while no lines on the left, it urns right

 Car_right();

 }

 else { //Or it moves forward

 Car_front();

 }

 }

 else { //No lines detected in the middle

 if (L_val == 1 && R_val == 0) { //If a black line is detected on the left

and not on the right, it turns left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //If a black line is detected on the

 258

right while no lines on the left, it urns right

 Car_right();

 }

 else { //Otherwise, it stops

 Car_Stop();

 }

 }

 }

}

void fan_stop() {

 //Otherwise, it stops

 digitalWrite(INA, LOW);

 digitalWrite(INB, LOW);

}

void fan_begin() {

 //The fan operates

 digitalWrite(INA, LOW);

 digitalWrite(INB, HIGH);

 259

}

void Car_front()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 150);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 150);

}

void Car_back()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

}

void Car_left()

{

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 100);

 260

}

void Car_right()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 100);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

}

void Car_Stop()

{

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

}

 //**

 261

(5)Test Results:

After uploading the test code successfully and powering it up, the smart

car puts out the fire when it detects flame and continues moving along the

black line.

Project 19: IR Remote Control Tank

 262

(1)Description:

Infrared remote control is one of the most common remote control found

applications in electric motors, electric fans, and many other household

appliances. In this project,we use the knowledge we learned before to

make an infrared remote control smart car.

In the 9th lesson, we have tested the corresponding key value of each key

of the infrared remote control. In the project, we can set the code (key

value) to make the corresponding button to control the movements of the

smart car, and display the movement patterns on the 8X16 LED dot matrix.

The specific logic of the line-tracking smart car is shown in the table blow:

Initial

setting

Set the servo to 90°

8X16 LED dot matrix shows the pattern“V”

Ultrasonic

key
Key value Instructions from the key

Key:

Key value:

FF629D

Move forward（PWM 设为 200）

8X16 LED dot matrix displays the

pattern going forward

Key:

Key value:

FFA857

Turn back（set PWM to 200）

8X16 LEDdot matrix displays the

pattern turning back

 263

Key:

Key value:

FF22DD

Turn left

8X16 LED dot matrix displays the

pattern turning left

Key:

Key value:

FFC23D

Turn right

8X16 LED dot matrix displays the

pattern turning right

Key:

Key value:

FF02FD

Stop

8X16 LED dot matrix displays the

pattern “STOP”

Key:

Key value:

FF30CF

Rotate left（set PWM to 200）

8X16 LED dot matrix displays the

pattern turning left

Key:

Key value:

FF7A85

Rotate right（set PWM to 200）

8X16 LED dot matrix displays the

pattern turning right

 264

(2)Flow chart

Start

0xff629d

Receive IR signals?

0xffa857 0xff02fd 0xffc23d 0xff22dd

NO

YES

Go forward Go back Stop Turn right Turn left

(3)Connection Diagram:

 265

Note: The GND, VCC, SDA, and SCL of the 8x16 LED dot matrix are

respectively connected to-(GND), + (VCC), SDA, SCL on the sensor

expansion board of V5.

The pins "-", "+" and S of the infrared receiving sensor module are

respectively connected to G (GND), V (VCC), and A0 of the Keyestudio

expansion board. When the digital port is not enough, the analog port can

be used as a digital port. And analog port A0 is equivalent to digital port 14,

A1 is equivalent to digital port 15, and so on.

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 19

 IR remote tank

 http://www.keyestudio.com

*/

#include <IRremote.h>

IRrecv irrecv(A2); //

decode_results results;

long ir_rec; //Used to store the received infrared values

 266

//Array, used to save data of images, can be calculated by yourself or

gotten from modulus tool

unsigned char start01[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

unsigned char front[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x12, 0x09,

0x12, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char back[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x48, 0x90,

0x48, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char left[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x28, 0x10,

0x44, 0x28, 0x10, 0x44, 0x28, 0x10, 0x00};

unsigned char right[] = {0x00, 0x10, 0x28, 0x44, 0x10, 0x28, 0x44, 0x10,

0x28, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char STOP01[] = {0x2E, 0x2A, 0x3A, 0x00, 0x02, 0x3E, 0x02, 0x00,

0x3E, 0x22, 0x3E, 0x00, 0x3E, 0x0A, 0x0E, 0x00};

unsigned char clear[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

#define SCL_Pin A5 //Set the clock pin as A5

#define SDA_Pin A4 //Set the data pin as A4

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

 267

#define MR_PWM 9 //Define the PWM control pin of the right motor

void setup() {

 Serial.begin(9600);

 irrecv.enableIRIn(); //Initialize infrared receiver library

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 pinMode(SCL_Pin, OUTPUT);

 pinMode(SDA_Pin, OUTPUT);

 matrix_display(clear); //Clear screen

 matrix_display(start01); //Display the pattern start

}

void loop() {

 if (irrecv.decode(&results)) { //Receive the value of infrared remote

control

 ir_rec = results.value;

 268

 String type = "UNKNOWN";

 String typelist[14] = {"UNKNOWN", "NEC", "SONY", "RC5", "RC6",

"DISH", "SHARP", "PANASONIC", "JVC", "SANYO", "MITSUBISHI",

"SAMSUNG", "LG", "WHYNTER"};

 if (results.decode_type >= 1 && results.decode_type <= 13) {

 type = typelist[results.decode_type];

 }

 Serial.print("IR TYPE:" + type + " ");

 Serial.println(ir_rec, HEX);

 irrecv.resume();

 }

 switch (ir_rec) {

 case 0xFF629D: Car_front(); break; //Order the robot to move

forward

 case 0xFFA857: Car_back(); break; //Order the robot to step

back

 case 0xFF22DD: Car_T_left(); break; //Order the robot to turn left

 case 0xFFC23D: Car_T_right(); break; //Order the robot to turn

right

 case 0xFF02FD: Car_Stop(); break; //Order the robot to stop

 case 0xFF30CF: Car_left(); break; //Command the robot to

 269

rotate left

 case 0xFF7A85: Car_right(); break; //Command the robot to

rotate right

 default: break;

 }

}

/************The function controls the rotation of the servo***************/

void Car_front() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

 matrix_display(front); //Display the pattern going forward

}

void Car_back() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

 270

 matrix_display(back); //Display the pattern stepping back

}

void Car_left() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

 matrix_display(left); //Display the pattern rotate left

}

void Car_right() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

 matrix_display(right); //Display the pattern rotate right

}

void Car_Stop() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 271

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

 matrix_display(STOP01); //Display the pattern stop

}

void Car_T_left() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 255);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 150);

 matrix_display(left); //Display the pattern turn left

}

void Car_T_right() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 150);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 255);

 matrix_display(right); //Display the pattern turn right

}

//This function is used for dot matrix display

 272

void matrix_display(unsigned char matrix_value[])

{

 IIC_start(); //Use the function to start transmitting data

 IIC_send(0xc0); //Choose address

 for (int i = 0; i < 16; i++) //Pattern data has 16 bytes

 {

 IIC_send(matrix_value[i]); //Transmission pattern data

 }

 IIC_end(); //End the transmission of pattern data

 IIC_start();

 IIC_send(0x8A); //Display control, choose 4/16 pulse width

 IIC_end();

}

//Conditions for the start of data transmission

void IIC_start()

{

 digitalWrite(SDA_Pin, HIGH);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 273

 digitalWrite(SCL_Pin, LOW);

}

//The signal of the end of data transmission

void IIC_end()

{

 digitalWrite(SCL_Pin, LOW);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, HIGH);

 delayMicroseconds(3);

}

//Transmit data

void IIC_send(unsigned char send_data)

{

 for (byte mask = 0x01; mask != 0; mask <<= 1) //Each byte has 8 bits,

and the detection starts from the low bit one bit by bit

 {

 if (send_data & mask) { //Set the high or low level of SDA_Pin based on

 274

whether each bit of the byte is 1 or 0

 digitalWrite(SDA_Pin, HIGH);

 } else {

 digitalWrite(SDA_Pin, LOW);

 }

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH); //Pull up the clock pin SCL_Pin to end the

transmission of data

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW); //Pull down the clock pin SCL_Pin to

change signals of SDA

 }

}

 //**

(5)Test Results:

After uploading the test code successfully and powering it up, the smart

car can be controlled to move by IR remote control and the 8*16 shows the

corresponding patterns of its movements.

 275

Project 20: Bluetooth Control Tank

(1) Description:

We have learned the basic knowledge of Bluetooth in the previous project .

In this lesson, we will use Bluetooth to control the smart car. Since it

involves Bluetooth, a sending end and a receiving end are needed. In the

project, we use the mobile phone as the sender (master), and the smart car

connected with the HM-10 Bluetooth module (slave) as the receiver.

 276

We have learned earlier that sending a bit can control LEDs. And the

principle of controlling this robot car is the same.

In order to better control the intelligent tank robot, we specially made an

APP. In this lesson, we will read all the key value on this APP through code,

and then introduce the exclusive APP of our tank robot.

(2)About the APP KeyesRobot

Download instructions for Apple System

Open App Store→search for KeyesRobot→download it to your phone.

Open the APP Motorhome →the following page pops up→select Tank

Robot.

 277

Turn on the Bluetooth on mobile phone → click the Bluetooth button in

the upper right corner of this APP →search and pair them.

(Note: we need to turn on the location permission when we pair

Bluetooth.)

Select TANK ROBOT and the following page appears:

 278

The usage of this App is almost the same for Apple system and Android

system. And here we intend to take Android system as an example to

explain how to use it properly.

Download instructions for Android System

Search KeyesRobot in Google Play or click following link:

https://play.google.com/store/apps/details?id=com.keyestudio.keyestudio

 279

Click Sign in to download the APP

The following icon implies a successful installation.

 280

Click the icon to enter the APP and choose TANK ROBOT;

Enable "location and Bluetooth" permission, then connect and pair

Bluetooth;

Scan for Bluetooth devices and the name of Bluetooth BLE 4.0 is HMSoft

which does not have a pairing password.

After uploading the test code successfully, powering it up and connecting

it with Bluetooth, the LED on the Bluetooth module flashed;

Click icon and search for Bluetooth as shown below.

 281

Click connect and the pairing is done and the LED remains on.

Connect the Bluetooth module and open the serial monitor to set the baud

rate to 9600;

Press the button of the Bluetooth APP, and the corresponding characters

are displayed in the serial monitor as shown in the picture below:

 282

(3)Test Code 1

Now let’s move to test code.

(Note:When uploading the code, the Bluetooth module must be

unplugged, and the Bluetooth can be reconnected after the uploading

process. Otherwise the code may not be burned, and we also need to turn

on the GPS when it is connected to the Bluetooth.)

/*

 keyestudio Mini Tank Robot v3.0

 lesson 20.1

 bluetooth test

 http://www.keyestudio.com

 283

*/

char ble_val; //Character variable(used to store the value received by

Bluetooth)

void setup() {

 Serial.begin(9600);

}

void loop() {

 if(Serial.available() > 0) //Determine whether there is data in the

serial port buffer

 {

 ble_val = Serial.read(); //Read the data in the serial port buffer

 Serial.println(ble_val); //Print in out

 }

}

//***

First remove the Bluetooth module and upload the test code;

Then reconnect the Bluetooth module and open the serial monitor to set

the baud rate to 9600;

Press the button of the Bluetooth APP, and the corresponding characters

are displayed in the serial monitor as shown in the picture below:

below.

 284

The following table illustrates the functions of corresponding keys:

Keys Functions

 Pair and connect HM-10 Bluetooth module;click again

to disconnect

 select the robot to operate

to control the movements of the robot by buttons

To control the movements of the robot by joystick

To control the movements of the robot by gravity

 285

Send “F”when pressed

and “S”when released

The car moves forward when

it is pressed and stops when

released

Send “L”when pressed

and “S”when released

The car turns left when it is

pressed tight and stops when

released

Send “R”when pressed

and “S”when released

The car turns right when it is

pressed tight and stops when

released

Send “B”when pressed

and “S”when released

The car turns back when it is

pressed tight and stops when

released

 Send “u”+digit+“#”

when dragged

Drag to change the speed of

the left motor

Send “v”+digit+“#”

when dragged

Drag to change the speed of

the right motor

Select to enter Function page

Send “G”when pressed

and “S”when pressed

again

Enter obstacle avoidance

mode when pressed and exit

when pressed again

 286

Send “h”when pressed

and “S”when pressed

again

Enter following mode when

pressed and exit when

pressed again

Send “e”when pressed

and “S”when pressed

again

Enter line-tracking mode

when pressed and exit when

pressed again

Send “f”when pressed

and “S”when pressed

again

Enter

move-in-confined-space

mode when pressed and exit

when pressed again

Send “i”when pressed

and “S”when pressed

again

Enter light following mode

when pressed and exit when

pressed again

Send “j”when pressed

and “S”when pressed

again

Enter fire extinguishing mode

when pressed and exit when

pressed again

Select to enter facial expression display mode

Send “k”when pressed

and “z”when pressed

again

Show smiling pattern when

clicked and clear expression

when clicked again

 287

Send “l”when pressed

and “z”when pressed

again

Show disgusting pattern

when clicked and clear

expression when clicked

again

Send “m”when pressed

and “z”when pressed

again

Show happy face when

clicked and clear expression

when clicked again

Send “n”when pressed

and “z”when pressed

again

Show sad pattern when

clicked and clear expression

when clicked again

Send “o”when pressed

and “z”when pressed

again

Show disparaging pattern

when clicked and clear

expression when clicked

again

Send “p”when pressed

and “z”when pressed

again

Show heart-shaped pattern

when clicked and clear

expression when clicked

again

Choose to enter the custom function interface; there are

six keys 1,2,3,4,5,6; with these keys, you can expand

some functions by yourself

 288

 Click to send “w” Click to display the analog

value detected by the

photoresistor on the left

 Click to send“y” Click to display the analog

value detected by the

photoresistor on the right

 Click to send“x” Click to show the distance

detected by ultrasonic sensor

(unit: cm)

Click to send“c”

Click again to send“d”

Press to turn on the fan and

press again to turn off it

 289

(4)Flow chart

Start

Receive the signal

 B

Receive the

signal L

Receive the

signal R

Receive the

signal S

Receive the

signal F

Receive signals?

Go forward Go back Turn left Turn right Stop

NO

YES

(5)Connection Diagram:

 290

The GND, VCC, SDA, and SCL of the 8x16 LED dot matrix are respectively

connected to-(GND), + (VCC), SDA, SCL of the expansion board;

The Bluetooth module is directly plugged into the expansion board. Please

pay attention to the direction of the pin. The STATE and BRK pins of the

Bluetooth module do not need to be connected.

(6)Test Code 2

(Note:When uploading the code, the Bluetooth module must be

unplugged, and the Bluetooth can be reconnected after the uploading

process. Otherwise the code may not be burned.)

/*

 keyestudio Mini Tank Robot V3

 lesson 20.2

 bluetooth tank

 http://www.keyestudio.com

*/

//Array, used to save data of images, can be calculated by yourself or

gotten from modulus tool

 291

unsigned char start01[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

unsigned char front[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x12, 0x09,

0x12, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char back[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x48, 0x90,

0x48, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char left[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x28, 0x10,

0x44, 0x28, 0x10, 0x44, 0x28, 0x10, 0x00};

unsigned char right[] = {0x00, 0x10, 0x28, 0x44, 0x10, 0x28, 0x44, 0x10,

0x28, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char STOP01[] = {0x2E, 0x2A, 0x3A, 0x00, 0x02, 0x3E, 0x02, 0x00,

0x3E, 0x22, 0x3E, 0x00, 0x3E, 0x0A, 0x0E, 0x00};

unsigned char clear[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

#define SCL_Pin A5 //Set the clock pin as A5

#define SDA_Pin A4 //Set the data pin as A4

#define ML_Ctrl 4 //Define the direction control pin of the left motor

#define ML_PWM 5 //Define the PWM control pin of the left motor

#define MR_Ctrl 2 //Define the direction control pin of the right motor

#define MR_PWM 9 //Define the PWM control pin of the right motor

char ble_val; //Used to store the value obtained by Bluetooth

 292

void setup() {

 Serial.begin(9600);

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 pinMode(SCL_Pin, OUTPUT);

 pinMode(SDA_Pin, OUTPUT);

 matrix_display(clear); //Clear screen

 matrix_display(start01); //Display the pattern start

}

void loop() {

 if (Serial.available())

 {

 ble_val = Serial.read();

 Serial.println(ble_val);

 }

 switch (ble_val)

 293

 {

 case 'F': //Order the robot to move forward

 Car_front();

 break;

 case 'B': //Order the robot to step back

 Car_back();

 break;

 case 'L': //Order the robot to turn left

 Car_left();

 break;

 case 'R': //Order the robot to turn right

 Car_right();

 break;

 case 'S': //Order the robot to stop

 Car_Stop();

 break;

 }

}

/**********The function controls the rotation of the servo***************/

void Car_front() {

 294

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

 matrix_display(front); //Display the pattern going forward

}

void Car_back() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

 matrix_display(back); //Display the pattern stepping back

}

void Car_left() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, 200);

 matrix_display(left); //Display the pattern rotate left

}

 295

void Car_right() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, 200);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 200);

 matrix_display(right); //Display the pattern rotate right

}

void Car_Stop() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

 matrix_display(STOP01); //Display the pattern stop

}

//This function is used for dot matrix display

void matrix_display(unsigned char matrix_value[])

{

 IIC_start(); //Use the function to start transmitting data

 IIC_send(0xc0); //Choose address

 296

 for (int i = 0; i < 16; i++) //Pattern data has 16 bytes

 {

 IIC_send(matrix_value[i]); //Transmission pattern data

 }

 IIC_end(); //End the transmission of pattern data

 IIC_start();

 IIC_send(0x8A); //Display control, choose 4/16 pulse width

 IIC_end();

}

//Conditions for the start of data transmission

void IIC_start()

{

 digitalWrite(SDA_Pin, HIGH);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW);

}

//The signal of the end of data transmission

 297

void IIC_end()

{

 digitalWrite(SCL_Pin, LOW);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, HIGH);

 delayMicroseconds(3);

}

//Transmit data

void IIC_send(unsigned char send_data)

{

 for (byte mask = 0x01; mask != 0; mask <<= 1) //Each byte has 8 bits,

and the detection starts from the low bit one bit by bit

 {

 if (send_data & mask) { //Set the high or low level of SDA_Pin based on

whether each bit of the byte is 1 or 0

 digitalWrite(SDA_Pin, HIGH);

 } else {

 digitalWrite(SDA_Pin, LOW);

 298

 }

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH); //Pull up the clock pin SCL_Pin to end the

transmission of data

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW); //Pull down the clock pin SCL_Pin to

change signals of SDA

 }

}

//**

(7)Test Results:

After uploading the test code successfully, dialing the DIP switch to the

right end, powering it on, and pairing the APP with Bluetooth, the smart

car can be controlled to move by the APP.

 299

Project 21: Speed-Controlled-by-Bluetooth Tank

(1)Description:

In the previous project, we have learned how to control a smart tank with

Bluetooth. The PWM value of the motor we used before is 200 (speed is

200). In this lesson, we will use Bluetooth to adjust the speed of the smart

car, but the fixed speed of 200 cannot be changed. We should define a

variable speeds to store the speed value. Through the previous study, we

have known that the range of this value is from 0 to 255.

 300

(2) Flow chart

Start

Receive the

signal a

Receive the

signal d

Receive BT
signals?

Increase speed to
255

Reduce speed to 0

NO

YES

Receive the

signal S

End up speeding up

 301

(3)Connection Diagram:

The GND, VCC, SDA, and SCL of the 8x16 LED dot matrix are respectively

connected to-(GND), + (VCC), SDA, SCL of the expansion board;

The Bluetooth module is directly plugged into the expansion board. Please

pay attention to the direction of the pin. The STATE and BRK pins of the

Bluetooth module do not need to be connected.

 302

(4)Test Code

(Note:When uploading the code, the Bluetooth module must be

unplugged, and the Bluetooth can be reconnected after the uploading

process. Otherwise the code may not be burned.)

/*

 keyestudio Mini Tank Robot V3

 lesson 21

 bluetooth control speed tank

 http://www.keyestudio.com

*/

//Array, used to save data of images, can be calculated by yourself or

gotten from modulus tool

unsigned char start01[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

unsigned char front[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x12, 0x09,

0x12, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char back[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x48, 0x90,

0x48, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char left[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x28,

 303

0x10, 0x44, 0x28, 0x10, 0x44, 0x28, 0x10, 0x00};

unsigned char right[] = {0x00, 0x10, 0x28, 0x44, 0x10, 0x28, 0x44, 0x10,

0x28, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char STOP01[] = {0x2E, 0x2A, 0x3A, 0x00, 0x02, 0x3E, 0x02,

0x00, 0x3E, 0x22, 0x3E, 0x00, 0x3E, 0x0A, 0x0E, 0x00};

unsigned char clear[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char speed_a[] = {0x00, 0x00, 0x00, 0x20, 0x10, 0x08, 0x04,

0x02, 0xff, 0x02, 0x04, 0x08, 0x10, 0x20, 0x00, 0x00};

unsigned char speed_d[] = {0x00, 0x00, 0x00, 0x04, 0x08, 0x10, 0x20,

0x40, 0xff, 0x40, 0x20, 0x10, 0x08, 0x04, 0x00, 0x00};

#define SCL_Pin A5 //set the pin of clock to A5

#define SDA_Pin A4 //A4 set data pin to A4

#define ML_Ctrl 4 //define the direction control pin of thel left motor

#define ML_PWM 5 //define the PWM control pins of the left motor

#define MR_Ctrl 2 //define the direction control pin of thel right motor

#define MR_PWM 9 //define the PWM control pin of the right motor

char ble_val; //used to save the value from Bluetooth

byte speeds = 200;;//the initial speed is 200

void setup() {

 304

 Serial.begin(9600);

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 pinMode(SCL_Pin, OUTPUT);

 pinMode(SDA_Pin, OUTPUT);

 matrix_display(clear); //clear screens

 matrix_display(start01); //show start image

}

void loop() {

 if (Serial.available() > 0) {

 ble_val = Serial.read();

 Serial.println(ble_val);

 }

 switch (ble_val) {

 case 'F': //the command to go front

 Car_front();

 break;

 305

 case 'B': //the command to go back

 Car_back();

 break;

 case 'L': //the command to turn left

 Car_left();

 break;

 case 'R': //the command to turn right

 Car_right();

 break;

 case 'S': //the command to stop

 Car_Stop();

 break;

 case 'Z': //speed up

 speeds_a();

 break;

 case 'X': //speed down

 speeds_d();

 break;

 }

}

 306

/***************motor runs***************/

void Car_front() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, speeds);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, speeds);

 matrix_display(front); //show the image of going front

}

void Car_back() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, speeds);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, speeds);

 matrix_display(back); //show the image of going back

}

void Car_left() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, speeds);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, speeds);

 307

 matrix_display(left); //show the image of anticlockwise rotation

}

void Car_right() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, speeds);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, speeds);

 matrix_display(right); //show the image of clockwise rotation

}

void Car_Stop() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 0);

 matrix_display(STOP01); //show the image of stopping

}

void Car_T_left() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 255);

 308

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 150);

 matrix_display(left); //show the image of turning left

}

void Car_T_right() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 150);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, 255);

 matrix_display(right); //show the image of turning right

}

void speeds_a() { //Deceleration function

 matrix_display(speed_a); //show the image of speeding up

 while (1) {

 Serial.println(speeds); //show the speed

 if (speeds < 255) { //increase to 255

 speeds++;

 delay(10); //regulate speed

 }

 ble_val = Serial.read();

 309

 if (ble_val == 'S')break; //receive ‘S’ to stop speeding up

 }

}

void speeds_d() { //Deceleration function

 matrix_display(speed_d); //show the image of speeding down

 while (1) {

 Serial.println(speeds); //show the speed

 if (speeds > 0) { //reduce to 0

 speeds--;

 delay(10); //adjust the speed

 }

 ble_val = Serial.read();

 if (ble_val == 'S')break; //receive ‘S’ and stop accelaration

 }

}

//this function is used for the display of dot matrix

void matrix_display(unsigned char matrix_value[])

{

 IIC_start(); //use the function to start transmitting data

 IIC_send(0xc0); //select an address

 310

 for (int i = 0; i < 16; i++) //image data have 16 characters

 {

 IIC_send(matrix_value[i]); //data to transmit pictures

 }

 IIC_end(); //end the data transmission of pictures

 IIC_start();

 IIC_send(0x8A); //show control and select pulse width 4/16

 IIC_end();

}

//the condition that data starts transmitting

void IIC_start()

{

 digitalWrite(SDA_Pin, HIGH);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW);

}

//the sign that transmission of data ends

 311

void IIC_end()

{

 digitalWrite(SCL_Pin, LOW);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, HIGH);

 delayMicroseconds(3);

}

//transmit data

void IIC_send(unsigned char send_data)

{

 for (byte mask = 0x01; mask != 0; mask <<= 1) //ecah character has 8

digits, which is detected one by one

 {

 if (send_data & mask) { //set high or low levels in light of each bit(0

or 1)

 digitalWrite(SDA_Pin, HIGH);

 } else {

 digitalWrite(SDA_Pin, LOW);

 312

 }

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH); //pull up the clock pin SCL_Pin to end

the transmission of data

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW); //pull down the clock pin SCL_Pin to

change signals of SDA

 }

}

(5)Test Results:

After uploading the test code successfully, dialing the DIP switch to the

right end, powering it on, and pairing the APP with Bluetooth, the smart

car can be controlled to move by the APP. And the speed of the car can be

regulated by pulling the speed dials of the left and right motors.

(You can refer to function table in project 20 for help)

 313

Project 22: Multifunctional Tank

(1)Description:

The smart car has performed a single function in every previous project.

Can it display multiply functions at a time ? Positive. In this last big project,

we intend to use a complete code to control the smart car to show off all

functions mentioned in previous projects. We use the keys on the

Bluetooth APP to automatically switch various functions, quite simple and

convenient.

 314

(2)Flow chart

Start

Car receive a

signal？

YES

 d c

 R L B F

 h g f e

NO

Other
signals

Enable the
fan

Turn off
the fan

 u S
Other
signals

Go
forward

Go back Turn left Turn right Stop
Adjust the

speed of the
left motor

 i j
Other
signals

Line
tracking

Obstacle
avoidanceConfinement Following

Light
following

Fire
extinguishing

 k l

Display smile
expression

Show hate
expression

 v

Adjust the
speed of the
right motor

 p o n m z x

Show
happy

Show
disgust

Show
despise

Show
heartbeat

Clear
images

Show
distance

 w y

Show the
analog value of
the left sensor

Show the
analog value of
the right sensor

 315

(3)Connection Diagram:

1.Please carefully check the wiring.When we want to show the fire

extinguishing function of this car, we need to detach the ultrasonic sensor,

servo, and photosensitive from it, and replace them with the fan module

and flame sensor;

 316

2.The GND, VCC, SDA, and SCL of the 1.8x16 LED dot matrix are

respectively connected to-(GND), + (VCC), SDA, SCL of the expansion

board;

3.The VCC pin of the ultrasonic sensor (fan module) is connected to 5v(V),

Trig pin to digital 12(S), Echo pin to digital 13(S), and Gnd pin to Gnd(G);

4.The servo is connected to G, V, and 10. The brown wire of the servo is

connected to Gnd (G), the red wire is connected to 5v (V), and the orange

wire is connected to 10;

5.The RXD, TXD, GND, and VCC of the Bluetooth module are respectively

connected to TX, RX,-(GND), + (VCC), and the STATE and BRK pins of the

Bluetooth module do not need to be connected;

6.The "-", "+" and S pins of the infrared receiving sensor module are

respectively connected to the sensor expansion board G (GND), V (VCC),

A2 with wires;

7. The pins "-" "+" and S of the left photoresistor (flame sensor) module are

respectively connected to the G (GND), V (VCC), A0 of the expansion board

and for the right photoresistor (flame sensor) module they are connected

 317

to G (GND), V (VCC), A1.

8. Line-tracking sensor is connected to digital pins 6,7 and 8.

(4)Test Code

/*

 keyestudio Mini Tank Robot V3

 lesson 22

 multiple functions

 http://www.keyestudio.com

*/

#include <IRremote.h>

IRrecv irrecv(A2); //

decode_results results;

long ir_rec; //used to save the IR value

//Array, used to save data of images, can be calculated by yourself or

gotten from modulus tool

unsigned char start01[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,

0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

unsigned char STOP01[] = {0x2E, 0x2A, 0x3A, 0x00, 0x02, 0x3E, 0x02, 0x00,

0x3E, 0x22, 0x3E, 0x00, 0x3E, 0x0A, 0x0E, 0x00};

 318

unsigned char front[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x12, 0x09,

0x12, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char back[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x48, 0x90,

0x48, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char left[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x28, 0x10,

0x44, 0x28, 0x10, 0x44, 0x28, 0x10, 0x00};

unsigned char right[] = {0x00, 0x10, 0x28, 0x44, 0x10, 0x28, 0x44, 0x10,

0x28, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char Smile[] = {0x00, 0x00, 0x1c, 0x02, 0x02, 0x02, 0x5c, 0x40,

0x40, 0x5c, 0x02, 0x02, 0x02, 0x1c, 0x00, 0x00};

unsigned char Disgust[] = {0x00, 0x00, 0x02, 0x02, 0x02, 0x12, 0x08, 0x04,

0x08, 0x12, 0x22, 0x02, 0x02, 0x00, 0x00, 0x00};

unsigned char Happy[] = {0x02, 0x02, 0x02, 0x02, 0x08, 0x18, 0x28, 0x48,

0x28, 0x18, 0x08, 0x02, 0x02, 0x02, 0x02, 0x00};

unsigned char Squint[] = {0x00, 0x00, 0x00, 0x41, 0x22, 0x14, 0x48, 0x40,

0x40, 0x48, 0x14, 0x22, 0x41, 0x00, 0x00, 0x00};

unsigned char Despise[] = {0x00, 0x00, 0x06, 0x04, 0x04, 0x04, 0x24, 0x20,

0x20, 0x26, 0x04, 0x04, 0x04, 0x04, 0x00, 0x00};

unsigned char Heart[] = {0x00, 0x00, 0x0C, 0x1E, 0x3F, 0x7F, 0xFE, 0xFC,

0xFE, 0x7F, 0x3F, 0x1E, 0x0C, 0x00, 0x00, 0x00};

 319

unsigned char clear[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

#define SCL_Pin A5 //set the pin of clock to A5

#define SDA_Pin A4 //set the data pin to A4

#define ML_Ctrl 4 //define the direction control pin of the left motor as 4

#define ML_PWM 5 //define the PWM control pin of the left motor as 5

#define MR_Ctrl 2 //define the direction control pin of the right sensor as

2

#define MR_PWM 9 //define the PWM control pin of the right motor as

9

char ble_val; //used to save the Bluetooth value

byte speeds_L = 200; //the initial speed of the left motor is 200

byte speeds_R = 200; // the initial speed of the right motor is 200

String speeds_l, speeds_r; //receive PWM characters and convert them into

PWM value

//#define light_L_Pin A0 //define the pin of the left photoresistor

//#define light_R_Pin A1 //define the pin of the right photoresistor

int left_light;

 320

int right_light;

int flame_L = A0; //define the analog port of the left flame sensor to A0

int flame_R = A1; //define the analog port of the right flame sensor to A1

//wire up the line tracking sensor

#define L_pin 6 //left

#define M_pin 7 //middle

#define R_pin 8 //right

int L_val, M_val, R_val, flame_valL, flame_valR;

//the pin of 130 motor

int INA = 12;

int INB = 13;

//#define Trig 12

//#define Echo 13

float distance;//Store the distance values detected by ultrasonic for

following

//Store the distance values detected by ultrasonic for obstacle avoidance

int a;

 321

int a1;

int a2;

#define servoPin 10 //servo Pin

bool flag; // flage invarible, used to enter and exit a mode

void setup() {

 Serial.begin(9600);

 irrecv.enableIRIn(); //Initialize the library of the IR remote

// pinMode(light_L_Pin, INPUT);

// pinMode(light_R_Pin, INPUT);

 //define the pins of sensors to INPUT

 pinMode(flame_L, INPUT);

 pinMode(flame_R, INPUT);

// pinMode(Trig, OUTPUT);

// pinMode(Echo, INPUT);

 pinMode(ML_Ctrl, OUTPUT);

 pinMode(ML_PWM, OUTPUT);

 322

 pinMode(MR_Ctrl, OUTPUT);

 pinMode(MR_PWM, OUTPUT);

 pinMode(L_pin, INPUT); //set pins of the line tracking sensor to INPUT

 pinMode(M_pin, INPUT);

 pinMode(R_pin, INPUT);

 pinMode(servoPin, OUTPUT);

 pinMode(SCL_Pin, OUTPUT);

 pinMode(SDA_Pin, OUTPUT);

 pinMode(INA, OUTPUT);//set INA to OUTPUT

 pinMode(INB, OUTPUT);//set INB to OUTPUT

 matrix_display(clear); //clear screens

 matrix_display(start01); //show start

 procedure(90); //set the angle of the servo to 90°

}

void loop() {

 323

 if (Serial.available()) //if there is data in the serial buffer

 {

 ble_val = Serial.read();

 Serial.println(ble_val);

 switch (ble_val) {

 case 'F': Car_front(); break; //the command to go front

 case 'B': Car_back(); break; //the command to go back

 case 'L': Car_left(); break; //the command to turn left

 case 'R': Car_right(); break; //the command to turn right

 case 'S': Car_Stop(); break; //the command to stop

 case 'e': Tracking(); break; //enter the line tracking mode

 case 'f': Confinement(); break; //enter the confinement mode

// case 'g': Avoid(); break; //enter the obstacle avoidance mode

// case 'h': Follow(); break; //enter the line tracking mode

 324

// case 'i': Light_following(); break; //enter light following mode

 case 'j': Fire(); break; //enter the mode to put out fire

 case 'c': fan_begin(); break; //start the fan

 case 'd': fan_stop(); break; //turn off the fan

 case 'u': speeds_l = Serial.readStringUntil('#'); speeds_L =

String(speeds_l).toInt(); break; //start by receiving u, end by receiving

characters # and convert into the integer

 case 'v': speeds_r = Serial.readStringUntil('#'); speeds_R =

String(speeds_r).toInt(); break; //start by receiving u, end by receiving

characters # and convert into the integer

 case 'k': matrix_display(Smile); break; //show "smile" face

 case 'l': matrix_display(Disgust); break; //show "disgust" face

 case 'm': matrix_display(Happy); break; //show "happy" face

 case 'n': matrix_display(Squint); break; //show "Sad" face

 case 'o': matrix_display(Despise); break; //show "despise" face

 case 'p': matrix_display(Heart); break; //show the hearbeat

image

 325

 case 'z': matrix_display(clear); break; //clear images

 default: break;

 }

 }

 //the following signals are used to print out

 /*if(ble_val == 'x'){

 distance = checkdistance(); Serial.println(distance);

 delay(50);

 }else if(ble_val == 'w'){

 left_light = analogRead(light_L_Pin);

 Serial.println(left_light);

 delay(50);

 }else if(ble_val == 'y'){

 right_light = analogRead(light_R_Pin);

 Serial.println(right_light);

 delay(50);

 }*/

 if (irrecv.decode(&results)) { //receive the value detected by IR remote

 ir_rec = results.value;

 326

 Serial.println(ir_rec, HEX);

 switch (ir_rec) {

 case 0xFF629D: Car_front(); break; //the command to go front

 case 0xFFA857: Car_back(); break; //the command to go back

 case 0xFF22DD: Car_left(); break; //the command to rotate to

left

 case 0xFFC23D: Car_right(); break; //the command to rotate to

right

 case 0xFF02FD: Car_Stop(); break; //the command to stop

 default: break;

 }

 irrecv.resume();

 }

}

/*****************obstacle avoidance******************/

/*void Avoid()

{

 flag = 0;

 while (flag == 0)

 {

 327

 a = checkdistance(); //set the front distance detected by the

ultrasonic sensor to a

 if (a < 20) {//when the front distance is less than 20cm

 Car_Stop(); //robot stops

 delay(500); //delay in 500ms

 procedure(180); //servo platform turns left

 delay(500); //delay in 500ms

 a1 = checkdistance(); //set the left distance detected by the

ultrasonic sensor to a1

 delay(100); //read value

 procedure(0); //servo platform turns right

 delay(500); //delay in 500ms

 a2 = checkdistance(); //set the right distance detected by the

ultrasonic sensor to a2

 delay(100); //read value

 procedure(90); //back to 90°

 delay(500);

 if (a1 > a2) { //the left distance is larger than the right

 Car_left(); //robots turn left

 delay(700); //turn left for 700ms

 328

 } else {

 Car_right(); //robot turns right

 delay(700);

 }

 }

 else { //if the front distance ≥20cm，robot goes front

 Car_front(); //go front

 }

 // receive the Bluetooth value to exit the loop

 if (Serial.available())

 {

 ble_val = Serial.read();

 if (ble_val == 'S') //receive S

 {

 flag = 1; //set flag to 1,exit the loop

 Car_Stop();

 }

 }

 }

}*/

/*******************line tracking****************/

 329

/*void Follow() {

 flag = 0;

 while (flag == 0) {

 distance = checkdistance(); //set the distance value to distance

 if (distance >= 20 && distance <= 60) //20≤ distance ≤60,go front

 {

 Car_front();

 }

 else if (distance > 10 && distance < 20) //10＜ distance < 20， stop

 {

 Car_Stop();

 }

 else if (distance <= 10) //distance≤ 10， go back

 {

 Car_back();

 }

 else //or else, stop

 {

 Car_Stop();

 }

 if (Serial.available())

 {

 330

 ble_val = Serial.read();

 if (ble_val == 'S')

 {

 flag = 1; //exit the loop

 Car_Stop();

 }

 }

 }

}*/

/****************light following******************/

/*void Light_following() {

 flag = 0;

 while (flag == 0) {

 left_light = analogRead(light_L_Pin);

 right_light = analogRead(light_R_Pin);

 if (left_light > 650 && right_light > 650) //go front

 {

 Car_front();

 }

 else if (left_light > 650 && right_light <= 650) //turn left

 {

 331

 Car_left();

 }

 else if (left_light <= 650 && right_light > 650) //turn right

 {

 Car_right();

 }

 else //or else, stop

 {

 Car_Stop();

 }

 if (Serial.available())

 {

 ble_val = Serial.read();

 if (ble_val == 'S') {

 flag = 1;

 Car_Stop();

 }

 }

 }

}*/

/***************put out fire*****************/

 332

void Fire() {

 flag = 0;

 while (flag == 0) {

 //read the analog value of the flame sensor

 flame_valL = analogRead(flame_L);

 flame_valR = analogRead(flame_R);

 if (flame_valL <= 700 || flame_valR <= 700) {

 Car_Stop();

 fan_begin();

 } else {

 fan_stop();

 L_val = digitalRead(L_pin); //read the value of the left sensor

 M_val = digitalRead(M_pin); //read the value of the middle sensor

 R_val = digitalRead(R_pin); //read the value of the right one

 if (M_val == 1) { //the middle one detects black lines

 if (L_val == 1 && R_val == 0) { //if only the left one detects black

lines, turn left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //if only the right one detects

black lines, turn right

 333

 Car_right();

 }

 else { //go front otherwise

 Car_front();

 }

 }

 else { //the middle one doesn't detect black lines

 if (L_val == 1 && R_val == 0) { //if only the left one detects black

lines, turn left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //if only the right one detects

black lines, turn right

 Car_right();

 }

 else { //stop otherwise

 Car_Stop();

 }

 }

 }

 if (Serial.available())

 {

 334

 ble_val = Serial.read();

 if (ble_val == 'S') {

 flag = 1;

 Car_Stop();

 }

 }

 }

 }

/***************line tracking*****************/

void Tracking() {

 flag = 0;

 while (flag == 0) {

 L_val = digitalRead(L_pin); //read the value of the left sensor

 M_val = digitalRead(M_pin); //read the value of the middle one

 R_val = digitalRead(R_pin); //read the value of the right one

 if (M_val == 1) { //the middle one detects black lines

 if (L_val == 1 && R_val == 0) { //if only the left one detects black

lines, turn left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //if only the right one detects

 335

black lines, turn right

 Car_right();

 }

 else { //or else, go front

 Car_front();

 }

 }

 else { //the middle one doesn't detect the black line

 if (L_val == 1 && R_val == 0) { //if only the left one detect the black

line,turn left

 Car_left();

 }

 else if (L_val == 0 && R_val == 1) { //if only the right one detects

black lines, turn right

 Car_right();

 }

 else { //or else, stop

 Car_Stop();

 }

 }

 if (Serial.available())

 {

 336

 ble_val = Serial.read();

 if (ble_val == 'S') {

 flag = 1;

 Car_Stop();

 }

 }

 }

}

/***************confinement*****************/

void Confinement() {

 flag = 0;

 while (flag == 0) {

 L_val = digitalRead(L_pin); //read the value of the left sensor

 M_val = digitalRead(M_pin); //read the value of the middle one

 R_val = digitalRead(R_pin); //read the value of the right one

 if (L_val == 0 && M_val == 0 && R_val == 0) { //if no sensor detects

black lines, go front

 Car_front();

 }

 else { //or else, any the line tracking sensor can go back and turn left

 Car_back();

 337

 delay(700);

 Car_left();

 delay(800);

 }

 if (Serial.available())

 {

 ble_val = Serial.read();

 if (ble_val == 'S') {

 flag = 1;

 Car_Stop();

 }

 }

 }

}

//he function to control the ultrasonic

/*float checkdistance() {

 float distance;

 digitalWrite(Trig, LOW);

 delayMicroseconds(2);

 338

 digitalWrite(Trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(Trig, LOW);

 distance = pulseIn(Echo, HIGH) / 58.20; // 2*29.1=58.2

 delay(10);

 return distance;

}*/

//the function to control servo

void procedure(int myangle) {

 int pulsewidth;

 pulsewidth = map(myangle, 0, 180, 500, 2000); //calculate the

pulsewith value

 for (int i = 0; i < 5; i++) {

 digitalWrite(servoPin, HIGH);

 delayMicroseconds(pulsewidth); //the time that high level maintains

is pulse width

 digitalWrite(servoPin, LOW);

 delay((20 - pulsewidth / 1000)); //The cycle is 20ms

 }

}

 339

/***************fan rotates*****************/

void fan_begin() {

 digitalWrite(INA, LOW);

 digitalWrite(INB, HIGH);

}

/***************fan stops rotating*****************/

void fan_stop() {

 digitalWrite(INA, LOW);

 digitalWrite(INB, LOW);

}

/***************dot matrix*****************/

///this function is used for the display of dot matrix

void matrix_display(unsigned char matrix_value[])

{

 IIC_start(); //use the function to start transmitting data

 IIC_send(0xc0); //select an address

 for (int i = 0; i < 16; i++) //image data have 16 characters

 {

 IIC_send(matrix_value[i]); //data to transmit pictures

 340

 }

 IIC_end(); //end the data transmission of pictures

 IIC_start();

 IIC_send(0x8A); //show control and select pulse width 4/16

 IIC_end();

}

//the condition that data starts transmitting

void IIC_start()

{

 digitalWrite(SDA_Pin, HIGH);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, LOW);

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW);

}

//transmit data

void IIC_send(unsigned char send_data)

{

 for (byte mask = 0x01; mask != 0; mask <<= 1) //ecah character has 8

 341

digits, which is detected one by one

 {

 if (send_data & mask) { //set high or low levels in light of each bit(0 or

1)

 digitalWrite(SDA_Pin, HIGH);

 } else {

 digitalWrite(SDA_Pin, LOW);

 }

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH); //pull up the clock pin SCL_Pin to end the

transmission of data

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, LOW); //pull down the clock pin SCL_Pin to

change signals of SDA

 }

}

//the sign that transmission of data ends

void IIC_end()

{

 digitalWrite(SCL_Pin, LOW);

 digitalWrite(SDA_Pin, LOW);

 342

 delayMicroseconds(3);

 digitalWrite(SCL_Pin, HIGH);

 delayMicroseconds(3);

 digitalWrite(SDA_Pin, HIGH);

 delayMicroseconds(3);

}

/***************motor runs***************/

void Car_front() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, speeds_R);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, speeds_L);

 matrix_display(front); //show the image of going front

}

void Car_back() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, speeds_R);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, speeds_L);

 matrix_display(back); //show the image of going back

 343

}

void Car_left() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, speeds_R);

 digitalWrite(ML_Ctrl, HIGH);

 analogWrite(ML_PWM, speeds_L);

 matrix_display(left); //show the image of turning left

}

void Car_right() {

 digitalWrite(MR_Ctrl, HIGH);

 analogWrite(MR_PWM, speeds_R);

 digitalWrite(ML_Ctrl, LOW);

 analogWrite(ML_PWM, speeds_L);

 matrix_display(right); //show the image of turning right

}

void Car_Stop() {

 digitalWrite(MR_Ctrl, LOW);

 analogWrite(MR_PWM, 0);

 digitalWrite(ML_Ctrl, LOW);

 344

 analogWrite(ML_PWM, 0);

 matrix_display(STOP01); //show the stop image

}

(5)Test Results:

(Note: before uploading the test code, you need to remove the Bluetooth

module. Otherwise the code will fail to upload. When the code uploading

process is done, open the GPS on your phone, and then reconnect the

Bluetooth module.)

After uploading the test code successfully, powering it on, and pairing the

APP with Bluetooth, the smart car can be controlled to perform various

functions by the APP.

We can realize the corresponding functions by pressing the corresponding

keys to select various modes, and finally end the operation of the smart car

with the key Stop. The above wiring diagram does not have a fan module

and a flame sensor module. When we show the fire extinguishing function

of the car, we need to replace the servo, the ultrasonic sensor and the

photoresistor with the fan module and flame module. Of course, at that

time we cannot enter the straight-line following, ultrasonic obstacle

 345

avoidance and light-seeking modes. However, we use pins to fix sensors

and modules, which makes the detachment and assembly very simple. No

need worry about it. But we need to block the unused code for some

modules using the same IO port. The fan module and the flame sensor

module in the above code have been blocked.

All the projects have been completed. Hope you’d obtain some fresh

knowledge. If you encounter any problem involves this kit, please feel free

to contact our customer service professionals who will help you timely.

And we strongly recommend you to have a go on the following products

rolled out by Keyestudio. Thank you for your attention.

 346

 347

9. Resources

https://fs.keyestudio.com/KS0526

https://fs.keyestudio.com/Mixly1-Windows

https://fs.keyestudio.com/Mixly1-MACOS

https://fs.keyestudio.com/KS0426
https://fs.keyestudio.com/Mixly1-Windows
https://fs.keyestudio.com/Mixly1-MACOS

