
                                                                                        
 

 1 

 

Content 

*About keyestudio ....................................................................................... 7 

*References and After-sales Service ............................................................ 8 

*Warning ..................................................................................................... 8 

*Copyright ................................................................................................... 8 

1. Introduction ............................................................................................. 9 

2. Features ................................................................................................. 11 

3. Specification .......................................................................................... 11 

4. Product List ........................................................................................... 12 

5. Assembly Guide ..................................................................................... 16 

Step 1:Mount the Bottom PCB............................................................ 17 

Step 2: Install Dot Matrix .................................................................... 21 

Step 3: Servo plastic platform ............................................................. 22 

Step 4: Install the Top PCB .................................................................. 26 

Step 5: Install the Top PCB .................................................................. 30 

Step 6: Hook-up Guide ....................................................................... 33 

6. Install Arduino IDE and Driver ............................................................... 35 

(1) Installing Arduino IDE .................................................................... 35 

(2) Keyestudio V4.0 Development Board ............................................ 37 

(3) Installing Driver of V4.0 Board ....................................................... 41 

(4) Install other visions of driver ......................................................... 47 



                                                                                        
 

 2 

(5) Arduino IDE Setting ....................................................................... 50 

(6) Start First Program ........................................................................ 54 

7. How to Add a Library? ........................................................................... 58 

（1）What are Libraries ? ................................................................... 58 

（2）How to Install a Library ? ........................................................... 59 

8. Projects .................................................................................................. 62 

Project 1: LED Blink ............................................................................. 63 

(1) Description ............................................................................. 63 

(2) Specification ........................................................................... 63 

(3) What You Need ....................................................................... 64 

(4) Wiring Diagram ...................................................................... 64 

(5) Test Code： ............................................................................. 65 

(6) Test Result ............................................................................... 65 

(7) Code Explanation .................................................................... 66 

(8) Extension Practice ................................................................... 66 

Project 2: Adjust LED Brightness ......................................................... 67 

(1) Description ............................................................................. 67 

(2) What You Need ....................................................................... 69 

(3) Hook-up Diagram ................................................................... 69 

(4) Test Code： ............................................................................. 69 

(5) Test Result ............................................................................... 70 

(6) Code Explanation .................................................................... 71 



                                                                                        
 

 3 

(7) Extension Practice： ............................................................... 74 

Project 3 : The Working Principle of Line Tracking Sensor .................. 75 

(1) Description： .......................................................................... 75 

(2) Specification： ........................................................................ 75 

(3) What You Need： ................................................................... 76 

(4) Connection Diagram： ........................................................... 77 

(5) Test Code： ............................................................................. 77 

(6) Test Result： ........................................................................... 79 

(7) Code Explanation .................................................................... 79 

Project 4: Servo Control ...................................................................... 83 

(1) Description ............................................................................. 83 

(2) Specification ........................................................................... 85 

(3) What You Need ....................................................................... 86 

(4) Connection Diagram： ........................................................... 86 

(5) Test Code1 .............................................................................. 87 

(6) Test Code2 .............................................................................. 89 

(7) Test Result ............................................................................... 91 

(8) Code Explanation .................................................................... 91 

Project 5: Ultrasonic Sensor ................................................................ 92 

(1) Description ............................................................................. 92 

(2) Specification ........................................................................... 92 

(3) What You Need ....................................................................... 93 



                                                                                        
 

 4 

(4) The principle of ultrasonic sensor ........................................... 93 

(5) Connection Diagram ............................................................... 95 

(6) Test Code ................................................................................ 96 

(7) Test Result ............................................................................... 98 

(8) Code Explanation .................................................................... 98 

(9) Extension Practice: .................................................................. 99 

Project 6: IR Reception...................................................................... 102 

(1) Description ........................................................................... 102 

(2) Specification ......................................................................... 103 

(3) What You Need ..................................................................... 104 

(4) Connection Diagram ............................................................. 105 

(5) Test Code .............................................................................. 105 

(6) Test Result ............................................................................. 107 

(7) Code Explanation .................................................................. 108 

(8) Extension Practice ................................................................. 108 

Project 7: Bluetooth Remote Control ................................................ 111 

(1) Description ........................................................................... 111 

(2) Specification ......................................................................... 112 

(3) What You Need ..................................................................... 112 

(4) Connection Diagram ............................................................. 113 

(5) Test Code .............................................................................. 114 

(6) Download APP ...................................................................... 115 



                                                                                        
 

 5 

(7) Code Explanation .................................................................. 122 

(8) Extension Practice ................................................................. 123 

Project 8: Motor Driving and Speed Control .................................... 125 

(1) Description ........................................................................... 125 

(2) Specification ......................................................................... 127 

(3) Drive Robot to Move ............................................................ 128 

(4) What You Need .................................................................... 130 

(5) Connection Diagram ............................................................. 130 

(6) Test Code .............................................................................. 131 

(7) Test Result ............................................................................. 134 

(8) Code Explanation .................................................................. 134 

(9) Extension Practice ................................................................. 134 

Project 9: 8*16 LED Board ................................................................. 138 

(1) Description ........................................................................... 138 

(2) Specification ......................................................................... 138 

(3) What You Need ..................................................................... 139 

(4) 8*16 Dot Matrix Display ........................................................ 139 

(5) Connection Diagram ............................................................. 145 

(6) Test Code .............................................................................. 145 

(7) Test Result ............................................................................ 149 

(8) Extension Practice ................................................................. 150 

Project 10: Line Tracking Robot ........................................................ 158 



                                                                                        
 

 6 

(1) Description ........................................................................... 158 

(2) Flow Chart ............................................................................ 161 

(3) Connection Diagram ............................................................. 161 

(4) Test Code .............................................................................. 161 

(5) Test Result ............................................................................ 166 

Project 11: Ultrasonic Follow Robot .................................................. 167 

(1) Description ........................................................................... 167 

(2) Flow Chart ............................................................................ 168 

(3) Hook-up Diagram ................................................................. 169 

(4) Test Code .............................................................................. 170 

(5) Test Result ............................................................................ 173 

Project 12: Ultrasonic Avoiding Robot .............................................. 174 

(1) Description ........................................................................... 174 

(2) Flow Chart ............................................................................ 176 

(3) Connection Diagram ............................................................. 177 

(4) Test Code .............................................................................. 177 

(5) Test Result ............................................................................ 187 

Project 13: IR Remote Control Robot ................................................ 188 

(1) Description ........................................................................... 188 

(2) Flow Chart ............................................................................ 188 

(3) Hook-up Diagram ................................................................. 190 

(4) Test Code .............................................................................. 190 



                                                                                        
 

 7 

(5) Test Result ............................................................................ 198 

Project 14: Bluetooth Remote Control .............................................. 199 

(1) Description ........................................................................... 199 

(2) Test APP ................................................................................ 200 

(3) Flow Chart ............................................................................ 206 

(4) Hook-up Diagram ................................................................. 206 

(5) Test Code .............................................................................. 207 

(6) Test Result ............................................................................ 215 

Project 15: Multi-purpose Bluetooth Robot ..................................... 215 

(1) Description ........................................................................... 215 

(2) Connection Diagram ............................................................. 216 

(3) Test Code .............................................................................. 217 

(4) Test Result ............................................................................ 232 

9. Resources ............................................................................................ 232 

 

 

 

 

 

 

*About keyestudio                 

Keyestudio is a best-selling brand owned by KEYES Corporation. Our 



                                                                                        
 

 8 

product lines range from controller boards, shields and sensor modules to 

smart cars and complete starter kits for Arduino, Raspberry Pi and BBC 

micro:bit, which can help customers at any level learn electronics and 

programming knowledge. Furthermore, all of our products comply with 

international quality standards and are greatly appreciated in a variety of 

different markets worldwide.  

You can obtain the details and the latest information through the following 

web site:http://www.keyestudio.com 

*References and After-sales Service         

1. Download Profile：https://fs.keyestudio.com/KS0470 

2. If you find any parts missing or encounter any troubles, please feel free 

to contact us: service@keyestudio.com. We will update projects and 

products continuously according to your sincere advice. 

*Warning                             

1. This product contains tiny parts(screws, copper pillars). Therefore, keep it 

out of reach of children under 7 please. 

2. This product consists of conductive parts (control board and electronic 

module). Please operate according to the requirements of tutorial. 

Otherwise, improper operation may cause parts to overheat and be 

damaged. Do not touch or immediately disconnect the circuit power. 

 

*Copyright                                                              

http://www.keyestudio.com/
http://m.138.gz.cn/webadmin/~CAmsnCrrNXhTAySKCerrIfWjjZuuWVfI/~/usr/mod_edituser.jsp?;uid=service@keyestudio.com;;clearCache=


                                                                                        
 

 9 

The keyestudio trademark and logo are the copyright of KEYES DIY ROBOT 

co.,LTD. All products under keyestudio brand can’t be copied, sold and 

resold by anyone or any companies without authorization. If you’re 

interested in our products, please contact with our sales representatives: 

fennie@keyestudio.com 

 

4WD BT Multi-purpose Car V2.0 Kit                                                  

Arduino Tutorial 

 

                

1. Introduction                                                       

 

Nowadays, technological education such as VR, kids programming, and 

artificial intelligence, has become a mainstream in educational industry. 

Therefore, people attach more importance to STEAM education. Arduino is 

http://m.138.gz.cn/webadmin/~CAmsnCrrNXhTAySKCerrIfWjjZuuWVfI/~/usr/mod_edituser.jsp?;uid=fennie@keyestudio.com;;clearCache=


                                                                                        
 

 10 

notably famous for Maker education. 

 

So what is Arduino? Arduino is an open-source electronics platform based 

on easy-to-use hardware and software. Arduino boards are able to read 

inputs - light on a sensor, a finger on a button, or a Twitter message - and 

turn them into outputs - activating a motor, turning on an LED, publishing 

something online. Based on this, Keyestudio team has designed a 4wd 

robot. It has a processor which is programmable using the Arduino IDE, to 

map its pins to sensors and actuators by a shield that plug in the processor. 

And it reads sensors, controls the actuators and decides how to operate. 

 

This product boasts 15 learning projects, from simple to complex, which 

will guide you to make a smart 4wd robot all by yourself and introduce the 

detailed knowledge about sensors and modules.  

 

Moreover, it is the best choice if you intend to obtain a DIY robot for 

learning programming, entertainment and competition. 

 

Note: Experiments should be conducted in line with the wiring diagram, 

including the use of right components and the wiring methods. For 

example, the supply power applied in the hook-up diagram is external 

power , so you will have to use external power rather than USB cable . 



                                                                                        
 

 11 

 

 

2. Features                                                           

1. Multi-purpose function: Obstacle avoidance, following, IR remote 

control, Bluetooth control, ultrasonic following and facial emoticons 

display. 

2. Easy to build: No soldering circuit required, complete assembly easily. 

3. High Tenacity: Aluminum alloy bracket, metal motors, high quality 

wheels and tracks. 

4. High extension: expand other sensors and modules through motor 

driver shield and sensor shield. 

5. Multiple controls: IR remote control, App control(iOS and Android 

system) 

6. Basic programming：C language code of Arduino IDE. 

 

3. Specification                                                            

 

Working voltage: 5v 

Input voltage: 7-12V 

Maximum output current: 2A 

Maximum power dissipation: 25W (T=75℃) 

Motor speed: 5V 200 rpm/min 



                                                                                        
 

 12 

Motor drive mode: dual H bridge drive 

Ultrasonic induction angle: <15 degrees 

Ultrasonic detection distance: 2cm-400cm 

Infrared remote control distance: 10 meters (measured) 

Bluetooth remote control distance: 50 meters (measured) 

Bluetooth control: support both Android and iOS system 

 

 

 

4. Product List                                                         

 

# Name QTY Picture 

1 Keyestudio V4.0 Board  1 

 

2 
Keyestudio Motor Driver 

Shield  
1 

 

3 
Keyestudio HM-10 

Bluetooth-4.0  
1 

 

4 Red LED Module 1 
 



                                                                                        
 

 13 

5 HC-SR04 Ultrasonic Sensor 1 
 

6 
Keyestudio Line Tracking 

Sensor 
1 

 

7 
Keyestudio IR Receiver 

Sensor 

1 

  

8 

Keyestudio 8*16 LED  

Dot Matrix 
1 

  4pinDupont Line 1 

9 Keyestudio 9G Servo  1 

 

10 Keyestudio Remote Control 1 
 

11 USB Cable 1 
 

12 18650 Battery Holder 1 
 

 

13 6-Slot AA Battery Holder 1 

 



                                                                                        
 

 14 

14 Servo Platform 1 

 

15 

Double Head 

JST-PH2.0MM-5P 24AWG  

Line 15CM 

1 
 

16 

8cm Double Head 

JST-PH2.0MM-3P 24AWG  

Line  

1  

17 
JST-PH2.0mm-4P to 2.54 

DuPont Female Line  
1 

 

18 Acrylic Board 1 

 

19 
Keyestudio 4WD Smart Car 

V2.0 Top Board 
1 

 

20 
Keyestudio 4WD Smart Car 

V2.0 Bottom PCB 
1 

 

21 Fixed Parts  4 
 



                                                                                        
 

 15 

22 Wheel  4 
     

23 
M3*10MM Dual-pass  

Copper Bush 
10 

 

24 
M3*40MM Dual-pass  

Copper Bush 
4 

 

25 
M3*30MM Round Head  

Screws 
8 

  

26 
M3*6MM Round Head  

Screws 
40 

 

 

27 M3 Nickel Plated Nuts 16 
 

 

28 
M2X8MM Round Head  

Screws 
6  

29 
M3*8MM Round Head  

Screws 
4 

 

30 M2 Nickel Plated Nuts 6  



                                                                                        
 

 16 

31 M3*10MM Flat Screws 3 
 

32  Motor (with welding wire) 4 

 

33 3*40MM Screwdriver 1  

34 Black Nylon Ties 3*100MM 6 

 
 
 
 
 
 

35  Winding Pipe 1 

 

36 
3Pin F-F Dupont Wire 

(20CM) 
3 

 

37 Decorative Board  

 

 

5. Assembly Guide                                                   

 

Note: Peel the plastic film off the board first when installing the smart 



                                                                                        
 

 17 

car. 

 

 

 

 

Step 1:Mount the Bottom PCB 

⚫ Prepare the parts as follows: 

Gear motor *4 

Fixed part  *4 

M3 nickel plated nut *10 

M3*6mm round-head screw *14 

4WD bottom PCB *1 

Tracking sensor *1 

Wheel *4 

Anti-reverse and dual 5p wire  *1 

M3*40mm copper pillar*6 

M3*30m round -head screw *8 

M3*8mm round-head screw *2 



                                                                                        
 

 18 



                                                                                        
 

 19 

 

 



                                                                                        
 

 20 



                                                                                        
 

 21 

 

 

Step 2: Install Dot Matrix 

⚫ Prepare the parts as follows: 

8X16 LED panel *1 

4WD baffle 

4P wire *1 

M2x8mm round-head screw *4 

M2 nut *4 



                                                                                        
 

 22 

 

 

Step 3: Servo plastic platform 

⚫ Prepare the parts as follows: 

Servo *1 

M2*4 screw  *1 

Black cable tie*2 

Ultrasonic sensor*1 

Black plastic platform *1 



                                                                                        
 

 23 

M1.2*4 Tapping screw *4  

M2*8 tapping screw *2 

 



                                                                                        
 

 24 

 



                                                                                        
 

 25 



                                                                                        
 

 26 

 

 

Step 4: Assemble Battery Holder 

⚫ Prepare the parts as follows: 

Top PCB *1 

M3 nut *3 

Motor drive board *1 

Control board *1 

Ir receiver module *1 

M3*10mm copper pillar *8 

M3*8mm round-head screw *1 

M3*6mm round-head screw *16 



                                                                                        
 

 27 

M3*10mm flat screw *2 

6-Slot AA battery holder *1 



                                                                                        
 

 28 

 



                                                                                        
 

 29 



                                                                                        
 

 30 

 

 

 

Step 5: Install the Top PCB 

⚫ Prepare the parts as follows: 

Bluetooth module *1 

M3*6MM round-head screw *6 

Jumper caps *8 



                                                                                        
 

 31 

 



                                                                                        
 

 32 

 

 

 



                                                                                        
 

 33 

Step 6: Hook-up Guide 

 

 

 

 



                                                                                        
 

 34 

 



                                                                                        
 

 35 

 

 

 

 

 

 

6. Install Arduino IDE and Driver                                  

(1) Installing Arduino IDE 

When you get control board, you need to download Arduino IDE and driver 

firstly. 



                                                                                        
 

 36 

You could download Arduino IDE from the official website: 

https://www.arduino.cc/, click the SOFTWARE on the browse bar, click

“DOWNLOADS” to enter download page, as shown below: 

 

 

There are various versions of IDE for Arduino. Just download a version 

compatible with your system. Here we will show you how to download and 

install the windows version of Arduino IDE. 

 

 

There are two versions of IDE for WINDOWS system. You can choose 

https://www.arduino.cc/


                                                                                        
 

 37 

between the installer (.exe) and the Zip file. For installer, it can be directly 

downloaded, without the need of installing it manually. However, for Zip 

package, you will need to install the driver manually. 

 

Click JUST DOWNLOAD. 

 

(2) Keyestudio V4.0 Development Board 

You need to know that keyestudio V4.0 development board is the core of 

this smart car. 

 



                                                                                        
 

 38 

    

         

Keyestudio V4.0 development board is based on ATmega328P MCU, and 

with a cp2102 Chip as a UART-to-USB converter.   



                                                                                        
 

 39 

 

It has 14 digital input/output pins (of which 6 can be used as PWM output

s), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a power ja

ck, 2 ICSP headers and a reset button. 



                                                                                        
 

 40 

 

 

We can power it with USB cable, the 

external DC power jack (DC 7-12V) or female headers Vin/ GND(DC 7-12V

) . 

 

 

 

 

 

 

   



                                                                                        
 

 41 

Micro controller ATmega328P-PU 

Operating Voltage 5V 

Input Voltage (recommended) DC7-12V 

Digital I/O Pins 

14 (D0-D13) 

 (of which 6 provide PWM 

output) 

PWM Digital I/O Pins 6 (D3, D5, D6, D9, D10, D11) 

Analog Input Pins 6 (A0-A5) 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 

32 KB (ATmega328P-PU) of 

which 0.5 KB used by 

bootloader 

SRAM 2 KB (ATmega328P-PU) 

EEPROM 1 KB (ATmega328P-PU) 

Clock Speed 16 MHz 

LED_BUILTIN D13 

 

(3) Installing Driver of V4.0 Board  

Let’s install the driver of keyestudio V4.0 board. The USB-TTL chip on V4.0 

board adopts CP2102 serial chip. The driver program of this chip is 



                                                                                        
 

 42 

included in Arduino 1.8 version and above, which is convenient. Plugging 

on USB port of board, the computer can recognize the hardware and 

automatically install the driver of CP2102. 

 

If you install unsuccessfully, or intend to install manually, please open the 

device manager of computer. Right click Computer----- Properties----- 

Device Manager 

 

 

 

The yellow exclamation mark on the page implies an unsuccessful  

installation and you should double click the hardware and update the 

driver.  



                                                                                        
 

 43 

 

 

 

Click“OK”to enter the following page. Click“browse my computer for 

updated driver software” 

 



                                                                                        
 

 44 

 

 

Click “Browse”, then search the driver of CP2102 and click “Next”,  

 

There is a DRIVERS folder in Arduino software installed package

（ ）, open driver folder and check the driver of CP210X series 

chips. 

 



                                                                                        
 

 45 

 

 

 

When opening the device manager, we will find the yellow exclamation mark 

disappear. The driver of CP2102 is installed successfully. 

 



                                                                                        
 

 46 

 

 

 

 



                                                                                        
 

 47 

(4) Install Other Visions of Driver 

If your development board is Arduino board, install the driver as follows: 

Step 1: Plug in the development board, click Computer----- Properties----- 

Device Manager, you could see the unknown device is shown. 

 

 

Step 2: Update the driver 



                                                                                        
 

 48 

 

Step 3: click“browse my computer for updated driver software” 

 

Step 4: find out the folder where the ARDUINO software is installed, click 

drivers folder and tap“Next” 



                                                                                        
 

 49 

 

 

Step 5: the driver is installed successfully. 

 

The device manager shows the serial port of Arduino. 



                                                                                        
 

 50 

 

 

(5) Arduino IDE Setting 

Click icon，and open Arduino IDE. 



                                                                                        
 

 51 

 

When downloading the sketch to the board, you must select the correct 

name of Arduino board that matches the board connected to your 

computer. As shown below; 

 



                                                                                        
 

 52 

 

Then select the correct COM port (you can see the corresponding COM port after 

the driver is successfully installed) 

 



                                                                                        
 

 53 

 

 

 



                                                                                        
 

 54 

 

A- Used to verify whether there is any compiling mistakes or not. 

B- Used to upload the sketch to your Arduino board. 

C- Used to create shortcut window of a new sketch. 

D- Used to directly open an example sketch. 

E- Used to save the sketch. 

F- Used to send the serial data received from board to the serial monitor. 

 

 

(6) Start First Program 

Open the file to select Example, and click BASIC>BLINK, as shown below: 



                                                                                        
 

 55 

 

 

Set the correct COM port, and the corresponding board and COM port are 



                                                                                        
 

 56 

shown on the lower right of IDE. 

 

Click to start compiling the program, and check errors. 



                                                                                        
 

 57 

 

 

Click to upload the program 



                                                                                        
 

 58 

 

After the program is uploaded successfully, the onboard LED blinks. 

Congratulation, you finish the first program. 

 

7. How to Add a Library?                                            

(1) What are Libraries ? 

Libraries are a collection of code that make it easy for you to connect a 

sensor,display, module, etc.  

For example, the built-in LiquidCrystal library helps talk to LCD displays. 

There are hundreds of additional libraries available on the Internet for 

download.  

The built-in libraries and some of these additional libraries are listed in the 

https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Reference/Libraries


                                                                                        
 

 59 

reference.  

(2) How to Install a Library ? 

Here we will introduce the most simple way to add libraries . 

Step 1：After downloading well the Arduino IDE, you can right-click the 

icon of Arduino IDE. 

Find the option "Open file location"  

 

 

Step 2: Click Open file location >libraries 

 

http://wiki.keyestudio.com/index.php/File:Libraries_1.png


                                                                                        
 

 60 

 

 

Step 3：Next, find out the“libraries” folder of 4WD robot car(seen in the 

link: https://fs.keyestudio.com/KS0470) 

 

 

 



                                                                                        
 

 61 

 

You just need to replicate and paste IRremove and SR04 folders into the 

libraries folder of Arduino IDE. 

Then the libraries of 4wd robot car are installed successfully, as shown 

below: 

 



                                                                                        
 

 62 

 

8. Projects                                                              

 

The whole project begins with basic programs. From simple to complex, 

the lessons will guide you to assemble the robot car and absorb the 

knowledge of electronics and machinery step by step. I reckon that you 

could hardly sit still and itch to have a go now. Let’s get started. 

 

Note: (G), marked on each sensor and module, is the negative pole and 

connected to “G”, ”-”or “GND”on the sensor shield or control board ; 

(V) is the positive pole and linked with V , VCC, + or 5V on the sensor shield 

or control board. 

 

 

 

 

 



                                                                                        
 

 63 

 

Project 1: LED Blink                                                     

 

(1) Description 

For starters and enthusiasts, LED Blink is a fundamental program. LED, the 

abbreviation of light emitting diodes, consists of Ga, As, P, N chemical 

compounds and so on. The LED can flash in diverse colors by altering the 

delay time in the test code. When in control, power on GND and VCC, the 

LED will be on if S end is in high level; nevertheless, it will go off. 

 

(2) Specification 

 

Control interface: digital port 

Working voltage: DC 3.3-5V 



                                                                                        
 

 64 

Pin spacing: 2.54mm 

LED display color: red 

 

(3) What You Need 

 

 

(4) Wiring Diagram 

 

 

 

 

The expansion board is stacked on development board; LED module is 

connected to G of shield;“+”is linked with 5V; S end is attached to D3. 

 



                                                                                        
 

 65 

 

(5) Test Code： 

/* 

 keyestudio 4wd BT Car V2 

 lesson 1.1 

 Blink 

 http://www.keyestudio.com 

*/ 

void setup() 

 {  

    pinMode(3, OUTPUT);// initialize digital pin 3 as an output. 

} 

void loop() // the loop function runs over and over again forever 

{  digitalWrite(3, HIGH); // turn the LED on (HIGH is the voltage level) 

   delay(1000); // wait for a second 

   digitalWrite(3, LOW); // turn the LED off by making the voltage LOW 

   delay(1000); // wait for a second 

}//******************************************************************* 

 

(6) Test Result 

Upload the program, LED blinks at the interval of 1s. 

 



                                                                                        
 

 66 

(7) Code Explanation 

pinMode(3，OUTPUT) - This function can denote that the pin is INPUT or 

OUTPUT 

digitalWrite(3 ， HIGH) - When pin is OUTPUT, we can set it to 

HIGH(output 5V) or LOW(output 0V) 

 

 

(8) Extension Practice 

We have succeeded in blinking LED. Next, let’s observe what will happen 

to the LED if we modify pins and delay time. 

 

/* 

 keyestudio 4wd BT Car V2 

 lesson 1.2 

 delay 

 http://www.keyestudio.com 

*/ 

void setup() {  // initialize digital pin 11 as an output. 

   pinMode(3, OUTPUT); 

} 

// the loop function runs over and over again forever 

void loop() 



                                                                                        
 

 67 

 { digitalWrite(3, HIGH); // turn the LED on (HIGH is the voltage level) 

   delay(100); // wait for 0.1 second 

   digitalWrite(3, LOW); // turn the LED off by making the voltage LOW 

   delay(100); // wait for 0.1 second 

}//**************************************************************** 

The test result shows that the LED flashes faster. Therefore, we can draw a 

conclusion that pins and time delaying affect flash frequency.  

 

 

 

Project 2: Adjust LED Brightness                                         

 

 

(1) Description 

In previous lesson, we control LED on and off and make it blink. 

In this project, we will control LED’s brightness through PWM simulating 

breathing effect. Similarly, you can change the step length and delay time 

in the code so as to demonstrate different breathing effects. 

PWM is a means of controlling the analog output via digital means. Digital 

control is used to generate square waves with different duty cycles (a signal 

that constantly switches between high and low levels) to control the analog 

output.In general, the input voltages of ports are 0V and 5V. What if the 3V 



                                                                                        
 

 68 

is required? Or a switch among 1V, 3V and 3.5V? We cannot change 

resistors constantly. For this reason, we resort to PWM.  

 

For Arduino digital port voltage outputs, there are only LOW and HIGH 

levels, which correspond to the voltage outputs of 0V and 5V respectively. 

You can define LOW as’ 0 ‘and HIGH as’ 1’, and let the Arduino 

output five hundred ‘0’ or ‘1’ within 1 second. If output five hundred 

‘1’, that is 5V; if all of which is ‘0’,that is 0V; if output 250 01 pattern, 

that is 2.5V.  

This process can be likened to showing a movie. The movie we watch are 

not completely continuous. Actually, it generates 25 pictures per second, 

which cannot be told by human eyes. Therefore, we mistake it as a 

continuous process. PWM works in the same way. To output different 

voltages, we need to control the ratio of 0 and 1. The more ‘0’or ‘1’ 

output per unit time, the more accurate the control. 



                                                                                        
 

 69 

(2) What You Need 

 

 

 

(3) Hook-up Diagram 

 

 

 

(4) Test Code： 

 

/* 

 keyestudio 4wd BT Car V2 

 lesson 2.1 

 pwm 



                                                                                        
 

 70 

 http://www.keyestudio.com 

*/ 

int ledPin = 3; // Define the LED pin at D3 

int value; 

void setup () { 

  pinMode (ledPin, OUTPUT); // initialize ledpin as an output. 

} 

void loop () { 

  for (value = 0; value <255; value = value + 1) { 

    analogWrite (ledPin, value); // LED lights gradually light up 

    delay (5); // delay 5MS 

  } 

  for (value = 255; value> 0; value = value-1) { 

    analogWrite (ledPin, value); // LED gradually goes out 

    delay (5); // delay 5MS 

  } 

} 

 

(5) Test Result 

Upload test code successfully, LED gradually changes from bright to dark, 

like human’s breath, rather than turning on and off immediately. 

 



                                                                                        
 

 71 

(6) Code Explanation 

To repeat some certain statements, we could use FOR statement. FOR 

statement format is shown below: 

  

  

FOR cyclic sequence: 

Round 1：1 → 2 → 3 → 4 

Round 2：2 → 3 → 4 

… 

Until number 2 is not established, “for”loop is over. 

After knowing this order, go back to code: 

for (int value = 0; value < 255; value=value+1){ 

        ...} 

for (int value = 255; value >0; value=value-1){ 

       ...} 

The two“for”statements make value increase from 0 to 255, then reduce 

from 255 to 0, then increase to 255,....infinitely loop 

There is a new function in the following ----- analogWrite() 

We know that digital port only has two state of 0 and 1. So how to send an 



                                                                                        
 

 72 

analog value to a digital value? Here,this function is needed. Let’s observe 

the Arduino board and find 6 pins marked“~”which can output PWM 

signals. 

Function format as follows: 

analogWrite(pin,value) 

analogWrite() is used to write an analog value from 0~255 for PWM port, 

so the value is in the range of 0~255. Attention that you only write the 

digital pins with PWM function, such as pin 3, 5, 6, 9, 10, 11. 

PWM is a technology to obtain analog quantity through digital method. 

Digital control forms a square wave, and the square wave signal only has 

two states of turning on and off (that is, high or low levels). By controlling 

the ratio of the duration of turning on and off, a voltage varying from 0 to 

5V can be simulated. The time turning on(academically referred to as high 

level) is called pulse width, so PWM is also called pulse width modulation. 

Through the following five square waves, let’s acknowledge more about 

PWM.  

 



                                                                                        
 

 73 

  

In the above figure, the green line represents a period, and value of 

analogWrite() corresponds to a percentage which is called Duty Cycle as 

well. Duty cycle implies that high-level duration is divided by low-level 

duration in a cycle. From top to bottom, the duty cycle of first square wave 

is 0% and its corresponding value is 0. The LED brightness is lowest, that is, 

light off. The more time the high level lasts, the brighter the LED. Therefore, 

the last duty cycle is 100%, which correspond to 255, and LED is the 

brightest. And 25% means darker. 

PWM mostly is used for adjusting the LED’s brightness or the rotation 

speed of motors. 

It plays a vital role in controlling smart robot cars. I believe that you cannot 

wait to learn next project. 

 



                                                                                        
 

 74 

  

(7) Extension Practice： 

Let’s modify the value of delay and remain the pin unchanged, then 

observe how LED changes. 

 

/* 

 keyestudio 4wd BT Car V2 

 lesson 2.2 

 pwm 

 http://www.keyestudio.com 

*/ 

int ledPin = 3; // Define the LED pin at D3 

void setup(){ 

  pinMode (ledPin, OUTPUT); // initialize ledpin as an output. 

} 

void loop(){ 

  for (int value = 0; value <255; value = value + 1){ 

    analogWrite (ledPin, value); // LED lights gradually light up 

    delay (30); // delay 30MS 

  } 

  for(int value=255; value>0;value=value-1){ 

    analogWrite (ledPin, value); // LED gradually goes out 



                                                                                        
 

 75 

    delay (30); // delay 30MS 

  } 

}//********************************************************** 

 

Upload the code to development board, LED flashes more slowly. 

 

 

Project 3 : The Working Principle of Line Tracking Sensor                 

(1) Description： 

The tracking sensor is actually an infrared sensor. The 

component used here is the TCRT5000 infrared tube.  

Its working principle is to use different reflectivity of 

infrared light to colors, then convert the strength of the 

reflected signal into a current signal.  

During the process of detection, black is active at HIGH level while white is 

active at LOW level. The detection height is 0-3 cm.  

Keyestudio 3-channel line tracking module has integrated 3 sets of 

TCRT5000 infrared tube on a single board, which is more convenient for 

wiring and control.  

By rotating the adjustable potentiometer on the sensor, it can adjust the 

detection sensitivity of the sensor. 



                                                                                        
 

 76 

(2) Specification： 

Operating Voltage: 3.3-5V (DC) 

Interface: 5PIN 

Output Signal: Digital signal 

Detection Height: 0-3 cm 

     

Special note: before testing, turn the potentiometer on the sensor to adjust 

the detection sensitivity. When adjust the LED at the threshold between ON 

and OFF, the sensitivity is the best.  

 

 

(3) What You Need： 

 

 

 



                                                                                        
 

 77 

 

(4) Connection Diagram： 

 

(5) Test Code： 

/* 

keyestudio 4wd BT Car V2 

lesson 3.1  

 Line Track sensor 

 http://www.keyestudio.com 

*/ 

int L_pin = 6;  //pins of left line tracking sensor 

int M_pin = 7;  //pins of middle line tracking sensor 

int R_pin = 8;  //pins of right line tracking sensor 

int val_L,val_R,val_M;// define these variables 



                                                                                        
 

 78 

void setup() 

{ 

  Serial.begin(9600); // initialize serial communication at 9600 bits per 

second 

  pinMode(L_pin,INPUT); // make the L_pin as an input 

  pinMode(M_pin,INPUT); // make the M_pin as an input 

  pinMode(R_pin,INPUT); // make the R_pin as an input 

} 

void loop()  

{  

  val_L = digitalRead(L_pin);//read the L_pin: 

  val_R = digitalRead(R_pin);//read the R_pin: 

  val_M = digitalRead(M_pin);//read the M_pin: 

  Serial.print("left:"); 

  Serial.print(val_L); 

  Serial.print(" middle:"); 

  Serial.print(val_M); 

  Serial.print(" right:"); 

  Serial.println(val_R); 

  delay(500);// delay in between reads for stability 

}//***************************************************************************

* 



                                                                                        
 

 79 

(6) Test Result： 

Upload the code on development board, open serial monitor to check line 

tracking sensors. And the displayed value is 1(high level) when no signals 

are received. The value shifts into 0 when the sensor is covered with paper. 

 

 

 

 

(7) Code Explanation 

Serial.begin(9600)- Initialize serial port, set baud rate to 9600 

pinMode- Define the pin as input or output mode 

digitalRead-Read the state of pin, which are generally HIGH and LOW level 

 

(8) Extension Practice 

After knowing its working principle, you can connect an LED to D3. so as to 

control LED by line tracking sensor. 



                                                                                        
 

 80 

 

 

Test Code 

/* 

keyestudio 4wd BT Car V2 

lesson 3.2 

 Line Track sensor 

 http://www.keyestudio.com 

*/ 

int L_pin = 6;  //pins of left line tracking sensor 

int M_pin = 7;  //pins of middle line tracking sensor 

int R_pin = 8;  //pins of right line tracking sensor 

int val_L,val_R,val_M;// define the variables of three sensors  

void setup() 

{ 

  Serial.begin(9600); // initialize serial communication at 9600 bits per 



                                                                                        
 

 81 

second 

  pinMode(L_pin,INPUT); // make the L_pin as an input 

  pinMode(M_pin,INPUT); // make the M_pin as an input 

  pinMode(R_pin,INPUT); // make the R_pin as an input 

  pinMode(3, OUTPUT); 

} 

void loop()  

{  

  val_L = digitalRead(L_pin);//read the L_pin: 

  val_R = digitalRead(R_pin);//read the R_pin: 

  val_M = digitalRead(M_pin);//read the M_pin: 

  Serial.print("left:"); 

  Serial.print(val_L); 

  Serial.print(" middle:"); 

  Serial.print(val_M); 

  Serial.print(" right:"); 

  Serial.println(val_R); 

 

  if (val_L == HIGH)//if left line tracking sensor detects signals 

  {  

    digitalWrite(3, LOW);//LED is off 

  }  



                                                                                        
 

 82 

  else//if left line tracking sensor doesn’t detect signals 

  {  

    digitalWrite(3, HIGH);//LED lights up 

    delay(2000);  

  } 

    

  if (val_R == HIGH)//if right line tracking sensor detects signals 

  { 

    digitalWrite(3, LOW);//LED is off 

  } 

  else//if right line tracking sensor doesn’t detect signals 

  { 

    digitalWrite(3, HIGH);//LED lights up 

    delay(2000);  

  } 

     

  if (val_M == HIGH)//if middle line tracking sensor detects signals 

  { 

    digitalWrite(3, LOW);//LED is off 

  } 

  else//if middle line tracking sensor doesn’t detect signals 

  { 



                                                                                        
 

 83 

    digitalWrite(3, HIGH);//LED lights up 

    delay(2000);  

  } 

} 

//**************************************************************************** 

 

Upload the code to development board, we could observe the brightness 

of LED when covering the line tracking sensor or getting close to it by 

hand. 

 

 

Project 4: Servo Control                                                 

 

 

 

(1) Description 

Servo motor is a position control rotary actuator. It mainly consists of a 

housing, a circuit board, a core-less motor, a gear and a position sensor. Its 



                                                                                        
 

 84 

working principle is that the servo receives the signal sent by MCU or 

receiver and produces a reference signal with a period of 20ms and width 

of 1.5ms, then compares the acquired DC bias voltage to the voltage of the 

potentiometer and obtain the voltage difference output. 

 

When the motor speed is constant, the potentiometer is driven to rotate 

through the cascade reduction gear, which leads that the voltage 

difference is 0, and the motor stops rotating. Generally, the angle range of 

servo rotation is 0° --180 ° 

 

The rotation angle of servo motor is controlled by regulating the duty cycle 

of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM 

signal is 20ms (50Hz). Theoretically, the width is distributed 

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width 

corresponds the rotation angle from 0° to 180°. But note that for different 

brand motors, the same signal may have different rotation angles.    

 

In general, servo has three lines in brown, red and orange. The brown wire 

is grounded, the red one is a positive pole line and the orange one is a 

signal line. 



                                                                                        
 

 85 

 

      

 

The corresponding servo angles are shown below: 

 

(2) Specification 

Working voltage: DC 4.8V ~ 6V 

Operating angle range: about 180 ° (at 500 → 2500 μsec) 

Pulse width range: 500 → 2500 μsec 

No-load speed: 0.12 ± 0.01 sec / 60 (DC 4.8V) 0.1 ± 0.01 sec / 60 (DC 6V) 

No-load current: 200 ± 20mA (DC 4.8V) 220 ± 20mA (DC 6V) 

Stopping torque: 1.3 ± 0.01kg · cm (DC 4.8V) 1.5 ± 0.1kg · cm (DC 6V) 



                                                                                        
 

 86 

Stop current: ≦ 850mA (DC 4.8V) ≦ 1000mA (DC 6V) 

Standby current: 3 ± 1mA (DC 4.8V) 4 ± 1mA (DC 6V) 

 

(3) What You Need 

 

 

(4) Connection Diagram： 

 

 

Wiring note: the brown line of servo is linked with Gnd(G), the red line is 

connected to 5v(V) and orange line is attached to digit 10. 

 

The servo has to be connected to external power due to its high demand 

for driving servo current. Generally, the current of a development board is 

not big enough. If without connected power, the development board could 



                                                                                        
 

 87 

be burnt. 

 

(5) Test Code1 

/* 

keyestudio 4wd BT Car V2 

lesson 4.1 

Servo 

http://www.keyestudio.com 

*/ 

#define servoPin 10  //servo Pin 

int pos; //the angle variable of servo 

int pulsewidth; // pulse width variable of servo 

void setup() { 

  pinMode(servoPin, OUTPUT);  //set the pins of servo to output 

  procedure(0); // set the angle of servo to 0 degree 

} 

void loop() { 

  for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 

degrees 

    // in steps of 1 degree 

    procedure(pos);              // tell servo to go to position in variable 

'pos' 



                                                                                        
 

 88 

    delay(15);                   //control the rotation speed of servo 

 

  } 

  for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 

degrees 

    procedure(pos);              // tell servo to go to position in variable 

'pos' 

    delay(15);                     

  }} 

// function to control servo 

void procedure(int myangle) { 

  pulsewidth = myangle * 11 + 500;  //calculate the value of pulse width 

  digitalWrite(servoPin,HIGH); 

  delayMicroseconds(pulsewidth);   //The duration of high level is pulse 

width 

  digitalWrite(servoPin,LOW); 

  delay((20 - pulsewidth / 1000));  // the cycle is 20ms, the low level last 

for the rest of time 

}//***************************************************************************

******* 

 

Upload code successfully, servo swings forth and back in the range of 0° to 



                                                                                        
 

 89 

180° 

 

There is another guide for restraining servo---- servo library file, the 

following link of official website is for your reference. 

https://www.arduino.cc/en/Reference/Servo 

 

The library file of servo is used in the following code 

 

 

 

 

(6) Test Code2 

/* 

 keyestudio 4wd BT Car V2 

 lesson 4.2 

 servo 

 http://www.keyestudio.com 

https://www.arduino.cc/en/Reference/Servo


                                                                                        
 

 90 

*/ 

#include <Servo.h> 

Servo myservo;  // create servo object to control a servo 

// twelve servo objects can be created on most boards 

int pos = 0;    // variable to store the servo position 

void setup() { 

  myservo.attach(10);  // attaches the servo on pin 9 to the servo object 

} 

void loop() { 

  for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 

degrees 

    // in steps of 1 degree 

    myservo.write(pos);              // tell servo to go to position in 

variable 'pos' 

    delay(15);                       // waits 15ms for the servo to reach 

the position 

  } 

  for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 

degrees 

    myservo.write(pos);              // tell servo to go to position in 

variable 'pos' 

    delay(15);                       // waits 15ms for the servo to reach 



                                                                                        
 

 91 

the position 

  }} 

//************************************************************************ 

 

(7) Test Result 

Upload code successfully and power on, servo swings in the range of 0° to 

180°. The result is same. We usually control it by library file. 

 

(8) Code Explanation 

Arduino comes with #include <Servo.h> (servo function and statement） 

The following are some common statements of the servo function: 

1. attach（interface）——Set servo interface, port 9 and 10 are available 

 

2. write（angle）——The statement to set rotation angle of servo, the angle 

range is from 0° to 180° 

3. read（）——The statement to read angle of servo, read the command 

value of “write()” 

4. attached（）——Judge if the parameter of servo is sent to its interface  

Note: The above written format is“servo variable name, specific statement

（）”, for instance: myservo.attach(9) 

 

 



                                                                                        
 

 92 

Project 5: Ultrasonic Sensor                                     

(1) Description 

 

The HC-SR04 ultrasonic sensor uses sonar to determine distance to an 

object like what bats do. It offers excellent non-contact range detection 

with high accuracy and stable readings in an easy-to-use package. It comes 

complete with ultrasonic transmitter and receiver modules. 

The HC-SR04 or the ultrasonic sensor is being used in a wide range of 

electronics projects for creating obstacle detection and distance measuring 

application as well as various other applications. Here we have brought the 

simple method to measure the distance with arduino and ultrasonic sensor 

and how to use ultrasonic sensor with arduino. 

 

(2) Specification 

Power Supply :+5V DC 

Quiescent Current : <2mA 

Working Current: 15mA 

Effectual Angle: <15° 



                                                                                        
 

 93 

Ranging Distance : 2cm – 400 cm 

Resolution : 0.3 cm 

Measuring Angle: 30 degree 

Trigger Input Pulse width: 10uS 

 

(3) What You Need 

 

(4) The principle of ultrasonic sensor 

As the above picture shown, it is like two eyes. One is transmitting end, the 

other is receiving end. 

 

The ultrasonic module will emit the ultrasonic waves after triggering a 

signal. When the ultrasonic waves encounter the object and are reflected 

back, the module outputs an echo signal, so it can determine the distance 

of the object from the time difference between the trigger signal and echo 

signal.  

The t is the time that emitting signal meets obstacle and returns. And the 

propagation speed of sound in the air is about 343m/s, and distance = 

speed * time. However, the ultrasonic wave emits and comes back, which is 

2 times of distance. Therefore, it needs to be divided by 2, the distance 



                                                                                        
 

 94 

measured by ultrasonic wave = (speed * time)/2 

 

1. Use method and timing chart of ultrasonic module: 

Setting the delay time of Trig pin of SR04 to 10μs at least, which can trigger 

it to detect distance. 

2. After triggering, the module will automatically send eight 40KHz 

ultrasonic pulses and detect whether there is a signal return. This step will 

be completed automatically by the module. 

3. If the signal returns, the Echo pin will output a high level, and the 

duration of the high level is the time from the transmission of the 

ultrasonic wave to the return. 

 

 

Circuit diagram of ultrasonic sensor: 

 

 

Trigger signals  

Send ultrasonic waves Send 8t 40KHz ultrasonic pulses 

Module gets the time gap of transmission 

and reception 

Test result 

10us high level  



                                                                                        
 

 95 

 

(5) Connection Diagram 

    

 

 

 



                                                                                        
 

 96 

 

Wiring guide: 

Ultrasonic sensor            keyestudio V5 Sensor Shield  

VCC           →                5v(V) 

     Trig          →                12(S) 

     Echo         →                13(S) 

     Gnd          →                Gnd(G) 

 

 

(6) Test Code 

/* 

 keyestudio 4wd BT Car V2 

 lesson 5 

 Ultrasonic sensor 

 http://www.keyestudio.com 

*/  

int trigPin = 12;    // Trigger 

int echoPin = 13;    // Echo 

long duration, cm, inches; 

 void setup() { 

  //Serial Port begin 

  Serial.begin (9600); 



                                                                                        
 

 97 

  //Define inputs and outputs 

  pinMode(trigPin, OUTPUT); 

  pinMode(echoPin, INPUT); 

} 

void loop() { 

  // The sensor is triggered by a HIGH pulse of 10 or more microseconds. 

  // Give a short LOW pulse beforehand to ensure a clean HIGH pulse: 

  digitalWrite(trigPin, LOW); 

  delayMicroseconds(2); 

  digitalWrite(trigPin, HIGH); 

  delayMicroseconds(10); 

  digitalWrite(trigPin, LOW); 

   // Read the signal from the sensor: a HIGH pulse whose 

  // duration is the time (in microseconds) from the sending 

  // of the ping to the reception of its echo off of an object. 

  duration = pulseIn(echoPin, HIGH); 

   // Convert the time into a distance 

  cm = (duration/2) / 29.1;     // Divide by 29.1 or multiply by 0.0343 

  inches = (duration/2) / 74;   // Divide by 74 or multiply by 0.0135 

    Serial.print(inches); 

  Serial.print("in, "); 

  Serial.print(cm); 



                                                                                        
 

 98 

  Serial.print("cm"); 

  Serial.println(); 

  delay(50); 

} 

//************************************************************************** 

 

(7) Test Result 

Upload test code on the development board, open serial monitor and set 

baud rate to 9600. The detected distance will be displayed, and the unit is 

cm and inch. Hinder the ultrasonic sensor by hand, the displayed distance 

value gets smaller. 

 

 

(8) Code Explanation 



                                                                                        
 

 99 

int trigPin- this pin is defined to transmit ultrasonic waves, generally 

output. 

int echoPin - this is defined as the pin of reception, generally input 

cm = (duration/2) / 29.1-unit is cm 

inches = (duration/2) / 74-unit is inch 

We can calculate the distance by using the following formula: 

distance = (traveltime/2) x speed of sound 

The speed of sound is: 343m/s = 0.0343 cm/uS = 1/29.1 cm/uS 

Or in inches: 13503.9in/s = 0.0135in/uS = 1/74in/uS 

We need to divide the traveltime by 2 because we have to take into 

account that the wave was sent, hit the object, and then returned back to 

the sensor. 

 

 

(9) Extension Practice: 

We have just measured the distance displayed by the ultrasonic. How 

about controlling the LED with the measured distance? Let's try it and 

connect an LED light module to the D3 pin. 

 

 



                                                                                        
 

 100 

 

 

/* 

 keyestudio 4wd BT Car V2 

 lesson 5.2 

 Ultrasonic LED 

 http://www.keyestudio.com 

*/  

int trigPin = 12;    // Trigger 

int echoPin = 13;    // Echo 

long duration, cm, inches; 

void setup() { 

  Serial.begin (9600);  //Serial Port begin 

  pinMode(trigPin, OUTPUT);  //Define inputs and outputs 

  pinMode(echoPin, INPUT); 

  pinMode(3, OUTPUT); 



                                                                                        
 

 101 

} 

 void loop()  

{ 

  // The sensor is triggered by a HIGH pulse of 10 or more microseconds. 

  // Give a short LOW pulse beforehand to ensure a clean HIGH pulse: 

  digitalWrite(trigPin, LOW); 

  delayMicroseconds(2); 

  digitalWrite(trigPin, HIGH); 

  delayMicroseconds(10); 

  digitalWrite(trigPin, LOW); 

  // Read the signal from the sensor: a HIGH pulse whose 

  // duration is the time (in microseconds) from the sending 

  // of the ping to the reception of its echo off of an object. 

  duration = pulseIn(echoPin, HIGH); 

  // Convert the time into a distance 

  cm = (duration/2) / 29.1;     // Divide by 29.1 or multiply by 0.0343 

  inches = (duration/2) / 74;   // Divide by 74 or multiply by 0.0135 

  Serial.print(inches); 

  Serial.print("in, "); 

  Serial.print(cm); 

  Serial.print("cm"); 

  Serial.println(); 



                                                                                        
 

 102 

  delay(50); 

if (cm>=2 && cm<=10)digitalWrite(3, HIGH); 

else digitalWrite(3, LOW); 

}//**************************************************************** 

Upload test code to development board and block ultrasonic sensor by 

hand, then check if LED is on 

 

 

Project 6: IR Reception                                                 

(1) Description 

There is no doubt that infrared remote control is ubiquitous in daily life. It 

is used to control various household appliances, such as TVs, stereos, video 

recorders and satellite signal receivers. Infrared remote control is 

composed of infrared transmitting and infrared receiving systems, that is, 

an infrared remote control and infrared receiving module and a single-chip 

microcomputer capable of decoding.     

The 38K infrared carrier signal emitted 

by remote controller is encoded by the 

encoding chip in the remote controller. 

It is composed of a section of pilot code, 

user code, user inverse code, data code, 

and data inverse code. The time 



                                                                                        
 

 103 

interval of the pulse is used to distinguish whether it is a 0 or 1 signal and 

the encoding is made up of these 0, 1 signals.  

The user code of the same remote control is unchanged while the data 

code can distinguish the key. 

When the remote control button is pressed, the remote control sends out 

an infrared carrier signal. When the IR receiver receives the signal, the 

program will decode the carrier signal and determines which key is pressed. 

The MCU decodes the received 01 signal, thereby judging what key is 

pressed by the remote control. 

Infrared receiver we use is an infrared receiver module. Mainly composed 

of an infrared receiver head, which is a device that integrates reception, 

amplification, and demodulation. Its internal IC has completed 

demodulation, and can achieve from infrared reception to output and be 

compatible with TTL signals. Additionally, it is suitable for infrared remote 

control and infrared data transmission. The infrared receiving module 

made by the receiver has only three pins, signal line, VCC and GND. It is 

very convenient to communicate with arduino and other microcontrollers. 

 

(2) Specification 

 



                                                                                        
 

 104 

       

 

Operating Voltage: 3.3-5V（DC） 

Interface: 3PIN 

Output Signal: Digital signal 

Receiving Angle: 90 degrees 

Frequency: 38khz 

Receiving Distance: 10m 

 

(3) What You Need 

 

 

 

 

 

 



                                                                                        
 

 105 

(4) Connection Diagram 

 

 

Respectively link“-”,“+”and S of IR receiver module with G(GND）, V（VCC）

and A0 of keyestudio development board. 

Attention: On the condition that digital ports are not available, analog 

ports can be regarded as digital ports. A0 equals to D14, A1 is equivalent to 

digital 15. 

 

 

(5) Test Code 

Firstly import library file of IR receiver module(refer to how to import 

Arduino library file) before designing code. 

 



                                                                                        
 

 106 

 

/* 

 keyestudio 4wd BT Car V2 

 lesson 6.1 

 IRremote 

 http://www.keyestudio.com 

*/  

#include <IRremote.h>     // IRremote library statement 

int RECV_PIN = A0;        //define the pins of IR receiver as A0 

IRrecv irrecv(RECV_PIN);    

decode_results results;   // decode results exist in the“result” of “decode 

results” 

void setup()   

 {   

      Serial.begin(9600);   

      irrecv.enableIRIn(); // Enable receiver 

 }   

 void loop() {   

   if (irrecv.decode(&results))//decode successfully, receive a set of 

infrared signals 

   {   

     Serial.println(results.value, HEX);//Wrap word in 16 HEX to output 



                                                                                        
 

 107 

and receive code  

     irrecv.resume(); // Receive the next value 

   }   

   delay(100);   

 } //******************************************************* 

 

(6) Test Result 

Upload test code, open serial monitor and set baud rate to 9600, point 

remote control to IR receiver and the corresponding value will be shown. If 

pressing too long, the error codes will appear. 

 

 

Below we have listed out each button value of keyestudio remote control. 

So you can keep it for reference.  



                                                                                        
 

 108 

 

 

(7) Code Explanation 

irrecv.enableIRIn(): after enabling IR decoding, the IR signals will be 

received, then function “ decode() ” will check continuously if decode 

successfully. 

 

irrecv.decode(&results): after decoding successfully, this function will 

come back to “true”, and keep result in “results”. After decoding a IR 

signals, run the resume()function and receive the next signal. 

 

(8) Extension Practice 

 

We decoded the key value of IR remote control. How about controlling LED 

by the measured value? We could design an experiment to affirm. Attach 

an LED to D3, then press the keys of remote control to make LED light on 



                                                                                        
 

 109 

and off. 

 

 

/* keyestudio 4wd BT Car V2 

lesson 6.2 

IRremote 

http://www.keyestudio.com 

*/  

#include <IRremote.h> 

int RECV_PIN = A0;//define the pin of IR receiver as A0 

int LED_PIN=3;// define the pin of LED as pin 3 

int a=0; 

IRrecv irrecv(RECV_PIN); 

decode_results results; 

void setup() 

{Serial.begin(9600); 



                                                                                        
 

 110 

  irrecv.enableIRIn(); // Initialize the IR receiver  

  pinMode(LED_PIN,OUTPUT);//set pin 3 of LED to OUTPUT 

} 

void loop() { 

  if (irrecv.decode(&results)) { 

if(results.value==0xFF02FD &a==0) //according to the above key value, 

press“OK”on remote control , LED will be controlled 

{digitalWrite(LED_PIN,HIGH);//LED will be on 

a=1; 

} 

else if(results.value==0xFF02FD &a==1) //press again 

{ 

digitalWrite(LED_PIN,LOW);//LED will go off 

a=0; 

} 

    irrecv.resume(); // receive the next value 

  }}//******************************************************* 

 

Upload code to development board, press“OK”key on remote control to 

make LED on and off. 

 

 



                                                                                        
 

 111 

Project 7: Bluetooth Remote Control                                     

(1) Description 

Bluetooth, a simple wireless communication module, has went viral since 

the last few decades and been used in most of the battery-powered 

devices for its easy-to-use function. 

Over the past years, there have 

been many upgrades of 

Bluetooth standard to fulfil the 

demands of customers and the 

development of technology as 

well as to follow the trend of 

time. 

Over the few years, there are 

many things changed including data transmission rate, power 

consumption with wearable and IoT Devices and Security System. 

Here are we going to learn about HM-10 BLE 4.0 with Arduino Board? The 

HM-10 is a readily available Bluetooth 4.0 module. This module is used for 

establishing wireless data communication. The module is designed by 

using the Texas Instruments CC2540 or CC2541 Bluetooth low energy (BLE) 

System on Chip (SoC).  

 

 



                                                                                        
 

 112 

(2) Specification 

 

Bluetooth protocol: Bluetooth Specification V4.0 BLE 

No byte limit in serial port Transceiving 

In open environment, realize 100m ultra-distance communication with 

iphone4s 

Working frequency: 2.4GHz ISM band 

Modulation method: GFSK(Gaussian Frequency Shift Keying) 

Transmission power: -23dbm, -6dbm, 0dbm, 6dbm, can be modified by AT 

command. 

Sensitivity: ≤-84dBm at 0.1% BER 

Transmission rate: Asynchronous: 6K bytes ; Synchronous: 6k Bytes 

Security feature: Authentication and encryption 

Supporting service: Central & Peripheral UUID FFE0, FFE1 

Power consumption: Auto sleep mode, stand by current 400uA~800uA, 

8.5mA during transmission. 

Power supply: 5V DC 

Working temperature: –5 to +65 Centigrade 

 

(3) What You Need 



                                                                                        
 

 113 

 

 

(4) Connection Diagram 

1. STATE: state test pins, connected to internal LED, generally keep it 

unconnected. 

2. RXD: serial interface, receiving terminal. 

3. TXD: serial interface, transmitting terminal. 

4. GND: Ground. 

5. VCC: positive pole of the power source. 

6. EN/BRK: break connect, it means breaking the Bluetooth connection, 

generally, keep it unconnected. 

 

Pay attention to the pin direction when inserting Bluetooth module, 

and don’t insert it before uploading test code. 



                                                                                        
 

 114 

(5) Test Code 

/* 

 keyestudio 4wd BT Car V2.0 

 lesson 7.1 

 bluetooth  

http://www.keyestudio.com 

*/ 

 

char ble_val; //character variable, used to store the value received by 

Bluetooth  

 

void setup() { 

  Serial.begin(9600); 

} 

void loop() { 

  if(Serial.available() > 0)  //make sure if there is data in serial buffer 

 

  { 

    ble_val = Serial.read();  //Read data from serial buffer 

    Serial.println(ble_val);  //Print 

  }} 

//********************************************************************** 



                                                                                        
 

 115 

(There will be contradiction between serial communication of code and 

communication of Bluetooth when uploading code. Therefore, don’t link  

Bluetooth module before uploading code.) 

After uploading code on development board, then insert Bluetooth 

module and wait for the command from your cellphone. 

 

(6) Download APP 

The code is for reading the received signal, and we also need a device to 

send signals. In this project, we send signals to control robot car via a 

cellphone. Therefore, we need to download the APP. 

 

1. For iOS system 

 

Note: Allow APP to access“location”in settings of your cellphone when 

connecting to Bluetooth module; otherwise, Bluetooth may not be 

connected. 

 

Enter APP STORE to search BLE Scanner 4.0, then download it. 

 



                                                                                        
 

 116 

 

 

2. For Android system 

Enter Google Play to find out BLE Scanner, then download. 

And allow APP to access“location”, you could enable“location”in 

settings of your cellphone. 

 

 

3. After installation, open App and enable“Location and Bluetooth” 

https://developer.android.google.cn/distribute?hl=zh-cn


                                                                                        
 

 117 

permission. 

 

4. Open App, the name of Bluetooth module is HMSoft. 

Then click “connect” to link it with Bluetooth 

 

 

5. After connecting to HMSoft, click it to get multiple options, such as 

device information, access permission, general and custom service. Choose 

“CUSTOM SERVICE” 



                                                                                        
 

 118 

 

6. Then the following page pops up. 



                                                                                        
 

 119 

 

7. Click（Read,Notify,WriteWithoutResponse)to enter the following page 

 



                                                                                        
 

 120 

 

8. Click Write Value to enter HEX or Text. 

 

 



                                                                                        
 

 121 

9. Open the serial monitor on Arduino，enter a 0 or other characters on 

Text interface. 

 

 

10. Then click“Write”, open serial monitor to view if there is a“0”signal 



                                                                                        
 

 122 

 

(7) Code Explanation 

Serial.available() : The current rest characters when return to buffer area. 

Generally, this function is used to judge if there is data in buffer. When 

Serial.available()>0, it means that receives the data and can be read 

Serial.read()：Read a data of a Byte in buffer of serial port, for instance, 

device sends data to Arduino via serial port, then we could read data by 

“Serial.read()” 

 

 

 



                                                                                        
 

 123 

(8) Extension Practice 

We could send a command via Bluetooth to turn a LED on and off. 

D3 is connected to a LED, as shown below: 

 

 

/* 

 keyestudio 4wd BT Car V2.0 

 lesson 7.2 

 Bluetooth  

 http://www.keyestudio.com 

*/  

int ledpin=3; 

void setup() 

{ 

  Serial.begin(9600); 

  pinMode(ledpin,OUTPUT); 

} 



                                                                                        
 

 124 

void loop() 

{ 

  int i; 

  if (Serial.available()) 

  { 

    i=Serial.read(); 

    Serial.println("DATA RECEIVED:"); 

    if(i=='1') 

    { 

      digitalWrite(ledpin,1); 

      Serial.println("led on"); 

    } 

    if(i=='0') 

    { 

      digitalWrite(ledpin,0); 

      Serial.println("led off"); 

    }}} 

//**************************************************************************** 

 



                                                                                        
 

 125 

 

 

Click“Write”on APP, when you enter 1, LED will be on;when you input 0, it 

will be off. (Remember to remove the Bluetooth module after finishing 

experiment. Otherwise, burning code will be affected) 

 

Project 8: Motor Driving and Speed Control                             

(1) Description 

There are many ways to drive a motor. Our robot car uses the most 

common solution--L298P--which is an excellent high-power motor driver 

IC produced by STMicroelectronics. It can directly drive DC motors, 

two-phase and four-phase stepping motors. The driving current is up to 2A, 

and the output terminal of motor adopts eight high-speed Schottky diodes 

as protection. 

We designed a shield based on the circuit of L298p.  



                                                                                        
 

 126 

The stacked design reduces the technical difficulty of using and driving the 

motor. 

 

 

 



                                                                                        
 

 127 

 

(2) Specification 

Circuit Diagram for L298P Board 

 

1) Logic part input voltage: DC5V 

2) Driving part input voltage: DC 7-12V 

3) Logic part working current: <36mA 

4) Driving part working current: <2A 

5) Maximum power dissipation: 25W (T=75℃) 

6) Working temperature: -25℃～＋130℃ 

7) Control signal input level: high level 2.3V<Vin<5V, low level 

-0.3V<Vin<1.5V 



                                                                                        
 

 128 

 

 

(3) Drive Robot to Move 

The driver of motor driver shield is in parallel connection. You could control 

the direction of motors by altering the orientation of jumper caps(seen in 

the picture).  

 

 

 

 

 

 

 

From the above diagram, it is known that the direction pin of B motor is D4; 



                                                                                        
 

 129 

speed pin is D5; D2 is the direction pin of A motor; and D9 is speed pin. 

PWM decides 2 motors to rotate so as to drive robot car. The PWM value is 

in the range of 0-255. The larger the number, the faster the rotation of the 

motor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4WD 

Robot 
    Motor (A) Motor (B) 

Forward Turn clockwise 

Backward Turn anticlockwise 

Rotate to 

left 
Turn anticlockwise Turn clockwise 

Rotate to 

right 
Turn clockwise Turn anticlockwise 

Stop Stop Stop 



                                                                                        
 

 130 

(4) What You Need 

 

 

 

 

 

(5) Connection Diagram 

 

Attention: please connect motors in compliance with the above 

connection diagram 

 

 

 

 



                                                                                        
 

 131 

(6) Test Code 

/* 

 keyestudio 4wd BT Car V2.0 

 lesson 8 

 motor driver shield 

 http://www.keyestudio.com 

*/  

#define ML_Ctrl 4     // define the direction control pin of B motor 

#define ML_PWM 5   //define the PWM control pin of B motor 

#define MR_Ctrl 2    //define direction control pin of A motor 

#define MR_PWM 9   //define the PWM control pin of A motor 

void setup() 

{ 

  pinMode(ML_Ctrl, OUTPUT);//set direction control pin of B motor to 

output 

  pinMode(ML_PWM, OUTPUT);//set PWM control pin of B motor to 

output 

  pinMode(MR_Ctrl, OUTPUT);//set direction control pin of A motor to 

output. 

  pinMode(MR_PWM, OUTPUT);//set the PWM control pin of A motor to 

output 

} 



                                                                                        
 

 132 

void loop() 

{  

  digitalWrite(ML_Ctrl,HIGH);//set the direction control pin of B motor to 

HIGH 

  analogWrite(ML_PWM,200);//set the PWM control speed of B motor to 

200 

  digitalWrite(MR_Ctrl,HIGH);//set the direction control pin of A motor to 

HIGH 

  analogWrite(MR_PWM,200);//set the PWM control speed of A motor to 

200 

 

  //front 

  delay(2000);//delay in 2s 

  digitalWrite(ML_Ctrl,LOW);//set the direction control pin of B motor to 

LOW 

  analogWrite(ML_PWM,200);//set the PWM control speed of B motor to 

200   

  digitalWrite(MR_Ctrl,LOW);//set the direction control pin of A motor to 

LOW 

  analogWrite(MR_PWM,200);//set the PWM control speed of A motor to 

200 

   //back 



                                                                                        
 

 133 

  delay(2000);//delay in 2s  

  digitalWrite(ML_Ctrl,LOW);//set the direction control pin of B motor to 

LOW 

  analogWrite(ML_PWM,200);//set the PWM control speed of B motor to 

200 

  digitalWrite(MR_Ctrl,HIGH);//set the direction control pin of A motor to 

HIGH 

  analogWrite(MR_PWM,200);// set the PWM control speed of A motor to 

200 

 

    //left 

  delay(2000);//delay in 2s 

  digitalWrite(ML_Ctrl,HIGH);//set the direction control pin of B motor to 

HIGH 

  analogWrite(ML_PWM,200);//set the PWM control speed of B motor to 

200 

  digitalWrite(MR_Ctrl,LOW);// set the direction control pin of A motor to 

LOW 

  analogWrite(MR_PWM,200);//set the PWM control speed of A motor to 

200 

 

   //right 



                                                                                        
 

 134 

  delay(2000);//delay in 2s 

  analogWrite(ML_PWM,0);//set the PWM control speed of B motor to 0 

  analogWrite(MR_PWM,0);//set the PWM control speed of A motor to 0 

 

    //stop 

  delay(2000);//delay in 2s 

}//************************************************************************* 

 

(7) Test Result 

Hook up by connection diagram, upload code and power on, smart car 

goes forward and back for 2s, turns left and right for 2s, and stops for 2s 

alternately. 

(8) Code Explanation 

digitalWrite(ML_Ctrl,LOW): the rotation direction of motor is decided by 

the high/low level and and the pins that decide rotation direction are 

digital pins. 

analogWrite(ML_PWM,200): the speed of motor is regulated by PWM, 

and the pins that decide the speed of motor must be PWM pins. 

 

 

(9) Extension Practice 

 



                                                                                        
 

 135 

Adjust the speed that PWM controls the motor, hook up in same way 

 

 

 

/* 

 keyestudio 4wd BT Car V2.0 

 lesson 8.2 

 motor driver 

 http://www.keyestudio.com 

*/  

#define ML_Ctrl 4     //define the direction control pin of B motor 

#define ML_PWM 5   //define the PWM control pin of B motor 

#define MR_Ctrl 2    //define the direction control pin of A motor 

#define MR_PWM 9   //define the PWM control pin of A motor 

void setup() 

{ 



                                                                                        
 

 136 

  pinMode(ML_Ctrl, OUTPUT);//set direction control pin of B motor to 

OUTPUT 

  pinMode(ML_PWM, OUTPUT);//set the PWM control pin of B motor to 

OUTPUT  

 pinMode(MR_Ctrl, OUTPUT);//set the direction control pin of A motor to 

OUTPUT 

  pinMode(MR_PWM, OUTPUT);//set PWM control pin of A motor to 

OUTPUT 

} 

void loop() 

{  

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

level 

  analogWrite(ML_PWM,250);//Set PWM control speed of B motor to 100 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH level 

  analogWrite(MR_PWM,250);//Set PWM control speed of A motor to 100 

  //front 

  delay(2000);//delay in 2s 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,250);//Set PWM control speed of B motor to 100 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 



                                                                                        
 

 137 

  analogWrite(MR_PWM,250);//Set PWM control speed of A motor to 100 

   //back 

  delay(2000);//delay in 2s 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,250);//Set PWM control speed of B motor to 100 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH level 

  analogWrite(MR_PWM,250);//Set PWM control speed of A motor to 100 

    //left 

  delay(2000);//delay in 2s 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

level 

  analogWrite(ML_PWM,250);//Set PWM control speed of B motor to 100 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,250);//Set PWM control speed of A motor to 100 

   //right 

  delay(2000);//delay in 2s 

  analogWrite(ML_PWM,0);//set PWM control speed of B motor to 0 

  analogWrite(MR_PWM,0);//set PWM control speed of A motor to 0 

    //stop 

  delay(2000);//delay in 2s 

}//*********************************************************************** 



                                                                                        
 

 138 

After uploading the code successfully, do you find the motors rotate 

faster? 

 

 

Project 9: 8*16 LED Board                                             

 

(1) Description 

If we add a 8*16 LED board to the robot, it will be amazing. Keyestudio's 

8*16 dot matrix can meet your requirements. You can create facial 

emoticons, patterns or other interesting displays yourself. 8*16 LED light 

board comes with 128 LEDs. The data of the microprocessor (arduino) 

communicates with the AiP1640 through the two-wire bus interface, so as 

to control the 128 LEDs on the module, which produce the patterns you 

need on dot matrix. To facilitate wiring, we also provide a HX-2.54 4Pin 

wiring. 

 

(2) Specification 

Working voltage: DC 3.3-5V 

Power loss: 400mW 



                                                                                        
 

 139 

Oscillation frequency: 450KHz        

Drive current: 200mA 

Working temperature: -40~80℃ 

Communication method: two-wire bus 

 

(3) What You Need 

 

 

 

 

(4) 8*16 Dot Matrix Display 

Circuit Graph： 

 



                                                                                        
 

 140 

 

The principle of 8*16 dot matrix: 

How to control each led light of 8*16 dot matrix? We know that a byte has 

8 bits, each bit is 0 or 1. When a bit is 0, turn off LED and when a bit is 0, 

turn on LED. Thereby, one byte can control the LED in a row of dot matrix, 

so 16 bytes can control 16 columns of led lights, that is, 8*16 dot matrix. 

 

Interface Description and Communication Protocol: 

The data of the microprocessor (arduino) communicates with the AiP1640 

through the two-wire bus interface. 

The communication protocol diagram is shown below: 

 (SCLK) is SCL, (DIN) is SDA: 

 

①The starting condition for data input: SCL is high level and SDA changes 

from high to low. 

②For data command setting, there are methods as shown in the figure 

below 

In our sample program, select the way to add 1 to the address 

automatically, the binary value is 0100 0000 and the corresponding 



                                                                                        
 

 141 

hexadecimal value is 0x40 

 

 

 

③For address command setting, the address can be selected as shown 

below. 

The first 00H is selected in our sample program, and the binary number 

1100 0000 corresponds to the hexadecimal 0xc0 

 

 

 

Irrelevant 

choice, 

 fill in 0 

 

 

 

Irrelevant 

choice, 

fill in 0 

Display address 

Description 

add 1 to the address 

automatically 

Fixed address 

Universal mode 

 

Test mode 

 

Irrelevant 

choice, 

 fill in 0 



                                                                                        
 

 142 

 

④The requirement for data input is that SCL is high level when inputting 

data, the signal on SDA must remain unchanged. Only when the clock 

signal on SCL is low level, the signal on SDA can be altered. The data input 

is low-order first, high-order is behind 

⑤ The condition to end data transmission is that when SCL is low, SDA is 

low, and when SCL is high, the SDA level also becomes high. 

⑥  Display control, set different pulse width, the pulse width can be 

selected as shown below 

In the example, we choose pulse width 4/16, and the hexadecimal 

corresponds to 1000 1010 is 0x8A 

 

 

 

 

Function 

Clear quantity 

setting 

 

 

(Brightness 

setting) 

On 

off 

Set pulse width to 1/16 

Set pulse width to 2/16 

Set pulse width to 4/16 

Set pulse width to 10/16 

Set pulse width to 11/16 

Set pulse width to 12/16 

Set pulse width to 13/16 

Set pulse width to 14/16 

 

 

 

 

Irrelevant 

choice, 

fill in 0 

Display switch 

setting 

Description 



                                                                                        
 

 143 

4. Introduction for Modulus Tool 

The online version of dot matrix modulus tool: 

http://dotmatrixtool.com/# 

①Open the link to enter the following page. 

 

 

②The dot matrix is 8*16 in this project, so set the height to 8, width to 16, 

as shown below. 

http://dotmatrixtool.com/


                                                                                        
 

 144 

 

 

③ Generate hexadecimal data from the pattern 

As shown below, the left button of the mouse is for selection while the 

right is for canceling. Thus you could use them to draw the pattern you 

want, then click Generate, to yield the hexadecimal data needed. 

 

The generated hexadecimal code is what will be displayed, so you need to save 

it for next procedure. 



                                                                                        
 

 145 

 

 

(5) Connection Diagram 

 

 

 

 

Wiring note: The GND, VCC, SDA, and SCL of the 8*16 LED panel are 

respectively connected to -(GND), + (VCC), A4 and A5 of the keyestudio 

sensor expansion board for two-wire serial communication. (Note: This pin 

is connected to Arduino IIC, but this module is not IIC communication, it 

can be linked with any two pins.) 

 

(6) Test Code 

The code that shows smile face 

 

 /* 

 keyestudio 4wd BT Car V2.0 



                                                                                        
 

 146 

 lesson 9.1 

 matrix 

 http://www.keyestudio.com 

*/  

//get the data of smile pattern in the modulus tool 

unsigned char smile[] = {0x00, 0x00, 0x1c, 0x02, 0x02, 0x02, 0x5c, 0x40, 

0x40, 0x5c, 0x02, 0x02, 0x02, 0x1c, 0x00, 0x00}; 

#define SCL_Pin  A5  //Set clock pin to A5 

#define SDA_Pin  A4  //Set data pin to A4 

void setup(){ 

  //Set pin to output 

  pinMode(SCL_Pin,OUTPUT); 

  pinMode(SDA_Pin,OUTPUT); 

  //Clear the matrix display 

  //matrix_display(clear); 

} 

void loop(){ 

  matrix_display(smile);  //display smile pattern 

} 

//this function is used for dot matrix display 

void matrix_display(unsigned char matrix_value[]) 

{ 



                                                                                        
 

 147 

  IIC_start();  //the function to call the data transmission 

  IIC_send(0xc0);  //Select address 

   

  for(int i = 0;i < 16;i++) //Pattern data has 16 bytes 

  { 

     IIC_send(matrix_value[i]); //data to convey patterns 

  } 

  IIC_end();   //end the transmission of patterns data 

  IIC_start(); 

  IIC_send(0x8A);  //display control, set pulse width to 4/16 

  IIC_end(); 

} 

//  the condition that data transmission starts 

void IIC_start() 

{ 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

} 



                                                                                        
 

 148 

// transmit data 

void IIC_send(unsigned char send_data) 

{ 

  for(char i = 0;i < 8;i++)  //Every character has 8 bits 

  { 

      digitalWrite(SCL_Pin,LOW);  //pull down the SCL_Pin to change the 

signal of SDA 

      delayMicroseconds(3); 

      if(send_data & 0x01)  //1 or 0 of byte  is used to set high and low 

level of SDA_Pin 

      { 

        digitalWrite(SDA_Pin,HIGH); 

      } 

      else 

      { 

        digitalWrite(SDA_Pin,LOW); 

      } 

      delayMicroseconds(3); 

      digitalWrite(SCL_Pin,HIGH); //Pull up SCL_Pin to stop data 

transmission 

      delayMicroseconds(3); 

      send_data = send_data >> 1;  //Detect bit by bit, so move the data 



                                                                                        
 

 149 

right by one bit 

  } 

} 

//the sign that data transmission ends  

void IIC_end() 

{ 

  digitalWrite(SCL_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

}//***************************************************************************

************* 

 

(7) Test Result 

After uploading code on keyestudio V4.0 development board, hook up by 

the connection diagram, the DIP switch is dialed to right end, then a smile 

pattern is shown. 



                                                                                        
 

 150 

 

 

(8) Extension Practice 

 

We use the modulo tool (http://dotmatrixtool.com/#)to make the dot 

matrix alternately display start, forward and stop patterns then clear the 

patterns, and the time interval is 2000 milliseconds. 

 

http://dotmatrixtool.com/


                                                                                        
 

 151 

         

 

Get the graphical code to be displayed via modulus tool 

 

Start ：

0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x80,0x40,0x20,0x10,0x08,0x04,

0x02,0x01 

Go front： 

0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00 

Go back： 

0x00,0x00,0x00,0x00,0x00,0x24,0x48,0x90,0x48,0x24,0x00,0x00,0x00,0x00,

0x00,0x00 

Turn left： 

0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00 

Turn right: 

0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,

0x00,0x00 

Stop： 



                                                                                        
 

 152 

0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A,

0x0E,0x00 

Clear the matrix display: 

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00 

 

 

The code that the multiple patterns shift: 

 

/* 

 keyestudio 4WD Robot v2.0 

 lesson 9.2 

 matrix 

 http://www.keyestudio.com 

*/  

//Array, used to store the data of pattern, can be calculated by yourself or 

obtained from the modulus tool 

unsigned char start01[] = 



                                                                                        
 

 153 

{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x80,0x40,0x20,0x10,0x08,0x04,

0x02,0x01}; 

unsigned char front[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char back[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x48,0x90,0x48,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char left[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00}; 

unsigned char right[] = 

{0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char STOP01[] = 

{0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A

,0x0E,0x00}; 

unsigned char clear[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00}; 

#define SCL_Pin  A5  //Set clock pin to A5 

#define SDA_Pin  A4  //Set data pin to A4 



                                                                                        
 

 154 

void setup(){ 

  //Set pin to output 

  pinMode(SCL_Pin,OUTPUT); 

  pinMode(SDA_Pin,OUTPUT); 

  //Clear the matrix display 

  matrix_display(clear); 

} 

void loop(){ 

  matrix_display(start01);  //Display start pattern 

  delay(2000); 

  matrix_display(front);    ///Front pattern 

  delay(2000); 

  matrix_display(STOP01);   //Stop pattern 

  delay(2000); 

  matrix_display(clear);    //Clear the matrix display 

  delay(2000); 

} 

 

//this function is used for dot matrix display 

void matrix_display(unsigned char matrix_value[]) 

{ 

  IIC_start();  //the function to call the data transmission 



                                                                                        
 

 155 

  IIC_send(0xc0);  //Select address 

    for(int i = 0;i < 16;i++) //Pattern data has 16 bytes 

  { 

     IIC_send(matrix_value[i]); //data to convey patterns 

  } 

  IIC_end();   //end the transmission of patterns data 

  IIC_start(); 

  IIC_send(0x8A);  //display control, set pulse width to 4/16 

  IIC_end(); 

} 

//  the condition that data transmission starts 

void IIC_start() 

{ 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

} 

// transmit data 

void IIC_send(unsigned char send_data) 



                                                                                        
 

 156 

{ 

  for(char i = 0;i < 8;i++)  //Every character has 8 bits 

  { 

      digitalWrite(SCL_Pin,LOW);  //pull down the SCL_Pin to change the 

signal of SDA 

      delayMicroseconds(3); 

      if(send_data & 0x01)  //1 or 0 of byte  is used to set high and low 

level of SDA_Pin 

      { 

        digitalWrite(SDA_Pin,HIGH); 

      } 

      else 

      { 

        digitalWrite(SDA_Pin,LOW); 

      } 

      delayMicroseconds(3); 

      digitalWrite(SCL_Pin,HIGH); //Pull up SCL_Pin to stop data 

transmission 

      delayMicroseconds(3); 

      send_data = send_data >> 1;  //Detect bit by bit, so move the data 

right by one bit 

  } 



                                                                                        
 

 157 

} 

//the sign that data transmission ends 

void IIC_end() 

{ 

  digitalWrite(SCL_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

}  

//**************************************************************************** 

 

 

 

Upload code on development board, 8*16 dot matrix display shows front , 

back and stop patterns, alternately. 

 



                                                                                        
 

 158 

   

 

 

 

Project 10: Line Tracking Robot                                         

 

(1) Description 

The previous projects are inclusive of the knowledge of multiple sensors 



                                                                                        
 

 159 

and modules. Next, we will work on a little challenging task. 

Built on the working principle of the line tracking sensor we could make a 

line tracking car.  

 

 

 

 

 

Line tracking robot car: 

Detection 

Left tracking sensor 
detects black line：HIGH 

 

detects white line：LOW 

Middle tracking 

sensor 

detects black line：

HIGH 

detects white line：LOW 

Right tracking 

sensor 

detects black line：

HIGH 

detects white line：LOW 

Condition 1 Status 

Middle tracking 

sensor detects 

black line 

go front 

（PWM set to 70） 



                                                                                        
 

 160 

Middle tracking 

sensor detects 

white line 

Status 

detecting the left and the right tracking 

sensor 

Condition 2 Status 

left tracking sensor 

detects black line; 

right sensor detects 

white line 

Rotate to left 

（PWM set to 200） 

left tracking sensor 

detects white line; 

right sensor detects 

black line 

Rotate to right 

（PWM set to 200） 

left tracking sensor 

detects black line; 

right sensor detects 

black line 

stop 

left tracking sensor 

detects white line; 

right sensor detects 

white line 

stop 

 



                                                                                        
 

 161 

(2) Flow Chart 

 

 

 

(3) Connection Diagram 

  

 

(4) Test Code 

 /* 



                                                                                        
 

 162 

keyestudio 4wd BT Car V2.0 

lesson 10 

Line Tracking Robot 

http://www.keyestudio.com 

*/  

#define ML_Ctrl 4     //define direction control pin of B motor 

#define ML_PWM 5   //define PWM control pin of B motor 

#define MR_Ctrl 2    //define direction control pin of A motor 

#define MR_PWM 9   //define PWM control pin of A motor 

const int sensor_l = 6;//define the pin of left line tracking sensor 

const int sensor_c = 7;//define the pin of middle line tracking sensor 

const int sensor_r = 8;//define the pin of right line tracking sensor 

int l_val,c_val,r_val;//define these variables 

void setup() { 

  Serial.begin(9600);//start serial monitor and set baud rate to 9600 

  pinMode(ML_Ctrl, OUTPUT);//set direction control pin of B motor to 

OUTPUT 

  pinMode(ML_PWM, OUTPUT);//set PWM control pin of B motor to 

OUTPUT 

  pinMode(MR_Ctrl, OUTPUT);//set direction control pin of A motor to 

OUTPUT 

  pinMode(MR_PWM, OUTPUT);//set PWM control pin of A motor to 



                                                                                        
 

 163 

OUTPUT 

  pinMode(sensor_l,INPUT);//set the pins of left line tracking sensor to 

INPUT 

  pinMode(sensor_c,INPUT);//set the pins of middle line tracking sensor to 

INPUT 

  pinMode(sensor_r,INPUT);//set the pins of right line tracking sensor to 

INPUT 

} 

void loop()  

{ 

  tracking(); //run main program 

} 

 

void tracking() 

{ 

  l_val = digitalRead(sensor_l);//read the value of left line tracking sensor 

  c_val = digitalRead(sensor_c);//read the value of middle line tracking 

sensor 

  r_val = digitalRead(sensor_r);//read the value of right line tracking sensor 

  if(c_val == 1)//if the state of middle one is 1, which means detecting 

black line 

  { 



                                                                                        
 

 164 

    front();//car goes forward 

  } 

  else 

  { 

    if((l_val == 1)&&(r_val == 0))//if only left line tracking sensor 

detects black trace 

    { 

      left();//car turns left 

    } 

else if((l_val == 0)&&(r_val == 1))//if only right line tracking sensor 

detects black trace 

    { 

      right();//car turns right 

    } 

    else// if line tracking sensors detect black trace or they don’t  

    { 

      Stop();//car stops 

    } 

  } 

} 

void front()//define the status of going forward 

{ 



                                                                                        
 

 165 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

  analogWrite(ML_PWM,70);//set PWM control speed of B motor to 70 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH  

  analogWrite(MR_PWM,70);//set PWM control speed of A motor to 70 

} 

void back()//define the state of going back 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void left()//car turns left 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH level 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void right()//define the right-turning state 



                                                                                        
 

 166 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

level 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void Stop()//define the state of stop 

{ 

  analogWrite(ML_PWM,0);//set PWM control speed of B motor to 0 

  analogWrite(MR_PWM,0);//set PWM control speed of A motor to 0 

}//********************************************************* 

 

(5) Test Result 

Upload the code on the keyestudio V4.0 board successfully. Stack the 

expansion board on the keyestudio V4.0 board and wire it according to 

connection diagram. After power-on, the DIP switch will be dialed to the 

“ON” end, and the smart car can walk along the black line. 

 

 

 

 



                                                                                        
 

 167 

Project 11: Ultrasonic Follow Robot                                   

 

 

 

(1) Description 

  

We can combine the hardware knowledge of various sensors, modules, 

motor drives to build an ultrasonic following robot car!  

In the circuit process, we can make use of ultrasonic sensors to detect the 

distance between a robot car and obstacles so as to control the robot car 

to move by the measured distance . And dot matrix shows a smile facial 

pattern. 

 

 

 

 



                                                                                        
 

 168 

The specific logic of ultrasonic follow robot car is shown below: 

 

Detection  
Measured distance of fro

nt obstacles 

distance

（unit：cm） 

Condition Distance＜8 

Status Go back（PWM set to 100） 

Condition distance≥8 and distance＜13 

Status Stop 

Condition distance≥13 and distance＜35 

Status Go front（PWM set to 100） 

Condition distance≥35 

Status stop 

 

(2) Flow Chart 



                                                                                        
 

 169 

 

(3) Hook-up Diagram 

 



                                                                                        
 

 170 

 

 

(4) Test Code 

/* 

keyestudio 4wd BT Car V2.0 

lesson 11 

Ultrasonic Follow Robot 

http://www.keyestudio.com 

*/  

#define ML_Ctrl 4     //define direction control pin of B motor 

#define ML_PWM 5   //define PWM control pin of B motor 

#define MR_Ctrl 2    //define direction control pin of A motor 

#define MR_PWM 9   //define PWM control pin of A motor 

#include "SR04.h" //define the function library of ultrasonic sensor 

#define TRIG_PIN 12// set the signal input of ultrasonic sensor to D12  

#define ECHO_PIN 13//set the signal output of ultrasonic sensor to D13 



                                                                                        
 

 171 

SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN); 

long distance; 

void setup() { 

  Serial.begin(9600);//open serial monitor and set baud rate to 9600 

  pinMode(ML_Ctrl, OUTPUT);//set direction control pin of B motor to 

OUTPUT 

  pinMode(ML_PWM, OUTPUT);//set PWM control pin of B motor to 

OUTPUT 

  pinMode(MR_Ctrl, OUTPUT);//set direction control pin of A motor to 

OUTPUT 

  pinMode(MR_PWM, OUTPUT);//set PWM control pin of A motor to 

OUTPUT 

  pinMode(TRIG_PIN,OUTPUT);// set TRIG_PIN to OUTPUT 

  pinMode(ECHO_PIN,INPUT);// set ECHO_PIN to INPUT 

} 

void loop() { 

  distance = sr04.Distance();// the distance detected by ultrasonic sensor 

   if(distance<8)//if distance is less than 8 

  { 

    back();//go back 

  } 

  else if((distance>=8)&&(distance<13))// if 8≤distance＜13 



                                                                                        
 

 172 

  { 

    Stop();//stop 

  } 

  else if((distance>=13)&&(distance<35))//if 13≤distance＜35 

  { 

    front();//follow 

  } 

  else//otherwise 

  { 

    Stop();//stop 

  } 

} 

 

void front()//go front  

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

  analogWrite(ML_PWM,100);//Set PWM control speed of B motor to 100 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH  

  analogWrite(MR_PWM,100);//Set PWM control speed of A motor to 100 

} 

void back()//go back 



                                                                                        
 

 173 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,100);//Set PWM control speed of B motor to 100 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,100);//Set PWM control speed of A motor to 100 

} 

void Stop()//stop 

{ 

  analogWrite(ML_PWM,0);//set PWM control speed of B motor to 0 

  analogWrite(MR_PWM,0);//set PWM control speed of A motor to 0 

}//********************************************************* 

 

(5) Test Result 

 

Uploading the code to the development board, and plugging in, dot matrix 

will display a smile facial pattern and follow the obstacle to move. 

 

 

 



                                                                                        
 

 174 

Project 12: Ultrasonic Avoiding Robot                                  

 

(1) Description 

 

We’ve learned LED matrix, motor drive, ultrasonic sensor and servo in 

previous lessons. Next, we could make an ultrasonic avoiding robot!  

The measured distance between an ultrasonic sensor and obstacle can be 

used to control the servo to rotate so as to make robot car move. 

 

The specific logic of ultrasonic avoiding smart car is as shown below:  



                                                                                        
 

 175 

 

Initial 

Setup 

8x16 LED Matrix Clear 

Set servo to 90° 

Loop 

program 

measured distance of front obstacle：distance

（unit: cm） 

Condition 1 State 

 

distance ＜

10 

 

 

Smart car stops 

8x16 LED matrix shows “stop” 

pattern 

Set the 

servo to 

180° 

measured distance 

of obstacle：a1（unit：

cm） 

Set the 

servo to 0° 

measured distance 

of obstacle：a2（unit：

cm） 

Condition 2 state 

a1＜a2 

rotate to right（PWM 

set to 200） 

8x16 LED matrix 

shows“rightward” 

pattern 



                                                                                        
 

 176 

Set the servo to 90° 

a1≥a2 

rotate to left（PWM 

set to 200） 

8x16 LED matrix 

shows “ leftward ” 

pattern 

Set servo to 90° 

distance ≥

10 

8x16 LED matrix shows“forward” 

pattern 

Go front（PWM set to 150） 

 

 

(2) Flow Chart 

 



                                                                                        
 

 177 

 

 

 

(3) Connection Diagram 

 

 

(4) Test Code 



                                                                                        
 

 178 

 

 

/* 

keyestudio 4wd BT Car V2.0 

lesson 12 

ultrasonic avoiding robot 

http://www.keyestudio.com 

*/  

//Array, used to store the data of pattern, can be calculated by yourself or 

obtained from the modulus tool 

unsigned char front[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char left[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00}; 

unsigned char right[] = 

{0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char STOP01[] = 

{0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A

,0x0E,0x00}; 



                                                                                        
 

 179 

unsigned char clear[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00}; 

#define SCL_Pin  A5  //Set clock pin to A5 

#define SDA_Pin  A4  //Set data pin to A4 

#define ML_Ctrl 4     //define direction control pin of B motor 

#define ML_PWM 5   //define PWM control pin of B motor 

#define MR_Ctrl 2    //define direction control pin of A motor 

#define MR_PWM 9   //define PWM control pin of A motor 

#include "SR04.h"//define the library of ultrasonic sensor 

#define TRIG_PIN 12// set the signal input of ultrasonic sensor to D12  

#define ECHO_PIN 13//set the signal output of ultrasonic sensor to D13  

SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN); 

long distance,a1,a2;//define three distance 

const int servopin = 10;//set the pin of servo to D10  

 

void setup() { 

  Serial.begin(9600);//open serial monitor and set baud rate to 9600  

  pinMode(ML_Ctrl, OUTPUT);//set direction control pin of B motor to 

OUTPUT 

  pinMode(ML_PWM, OUTPUT);//set PWM control pin of B motor to 

OUTPUT 



                                                                                        
 

 180 

  pinMode(MR_Ctrl, OUTPUT);//set direction control pin of A motor to 

OUTPUT 

 

  pinMode(MR_PWM, OUTPUT);//set PWM control pin of A motor to 

OUTPUT 

  servopulse(servopin,90);// the angle of servo is 90 degree 

  delay(300); 

  pinMode(SCL_Pin,OUTPUT);//  set clock pin to OUTPUT 

  pinMode(SDA_Pin,OUTPUT);//set data pin to OUTPUT 

  matrix_display(clear);// Clear the matrix display 

} 

 

void loop() 

{ 

  avoid();//run the main program 

} 

void avoid() 

{ 

  distance=sr04.Distance(); //obtain the value detected by ultrasonic 

sensor  

  if((distance < 20)&&(distance > 0))//if the distance is greater than 0 and 

less than 20   



                                                                                        
 

 181 

{ 

    car_Stop();//stop 

    matrix_display(STOP01);   //show stop pattern 

    delay(100); 

    servopulse(servopin,180);//servo rotates to 180° 

    delay(500); 

    a1=sr04.Distance();//measure the distance 

    delay(100); 

    servopulse(servopin,0);//rotate to 0 degree 

    delay(500); 

    a2=sr04.Distance();//measure the distance 

    delay(100); 

if(a1 > a2)//if distance a1 is greater than a2 

    { 

      car_left();//turn left 

      matrix_display(left);   //display left-turning pattern 

      servopulse(servopin,90);//servo rotates to 90 degree 

      delay(300);  

      matrix_display(front);   //show forward pattern 

    } 

    else//if the right distance is greater than the left 

    { 



                                                                                        
 

 182 

      car_right();// turn right 

      matrix_display(right);   // display right-turning pattern 

      servopulse(servopin,90);// servo rotates to 90 degree 

      delay(300);  

      matrix_display(front);   //show forward pattern 

    } 

  } 

  else//otherwise 

  { 

    car_front();//go forward 

    matrix_display(front);   // show forward pattern 

  } 

} 

void servopulse(int servopin,int myangle)//the running angle of servo 

{ 

  for(int i=0; i<30; i++) 

  { 

    int pulsewidth = (myangle*11)+500; 

    digitalWrite(servopin,HIGH); 

    delayMicroseconds(pulsewidth); 

    digitalWrite(servopin,LOW); 

    delay(20-pulsewidth/1000); 



                                                                                        
 

 183 

  }   

} 

void car_front()//car goes forward 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

level 

  analogWrite(ML_PWM,150);//set PWM control speed of B motor to 150 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH level 

  analogWrite(MR_PWM,150);//set PWM control speed of A motor to 150 

} 

void car_back()//go back 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_left()//car turns left 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 



                                                                                        
 

 184 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH  

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_right()//car turns right 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH  

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_Stop()//car stops 

{ 

  digitalWrite(ML_Ctrl,LOW); 

  analogWrite(ML_PWM,150); 

  digitalWrite(MR_Ctrl,LOW); 

  analogWrite(MR_PWM,150); 

  delay(50); 

  analogWrite(ML_PWM,0);//set PWM control speed of B motor to 0 

  analogWrite(MR_PWM,0);//set PWM control speed of A motor to 0 

} 

//this function is used for dot matrix display 



                                                                                        
 

 185 

void matrix_display(unsigned char matrix_value[]) 

{ 

  IIC_start();  //the function to call the data transmission 

  IIC_send(0xc0);  //Select address 

  for(int i = 0;i < 16;i++) //Pattern data has 16 bytes 

  { 

    IIC_send(matrix_value[i]); //data to convey patterns 

  } 

  IIC_end();   //end the transmission of patterns data 

  IIC_start(); 

  IIC_send(0x8A);  //display control, set pulse width to 4/16 

  IIC_end(); 

} 

//  the condition that data transmission starts   

void IIC_start() 

{ 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 



                                                                                        
 

 186 

} 

// transmit data 

void IIC_send(unsigned char send_data) 

{ 

  for(char i = 0;i < 8;i++)  //Every character has 8 bits 

  { 

    digitalWrite(SCL_Pin,LOW);  //pull down the SCL_Pin to change the 

signal of SDA 

    delayMicroseconds(3); 

    if(send_data & 0x01)  //1 or 0 of byte  is used to set high and low 

level of SDA_Pin 

    { 

      digitalWrite(SDA_Pin,HIGH); 

    } 

    else 

    { 

      digitalWrite(SDA_Pin,LOW); 

    } 

    delayMicroseconds(3); 

    digitalWrite(SCL_Pin,HIGH); //Pull up SCL_Pin to stop data 

transmission 

    delayMicroseconds(3); 



                                                                                        
 

 187 

    send_data = send_data >> 1;  //Detect bit by bit, so move the data 

right by one bit 

  } 

} 

//the sign that data transmission ends  

void IIC_end() 

{ 

  digitalWrite(SCL_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

}//********************************************************* 

 

(5) Test Result 

Upload the code on the keyestudio V4.0 board and wire according to 

connection diagram. After the DIP switch is dialed to the right end, the 

smart car can automatically avoid obstacles. 

 



                                                                                        
 

 188 

Project 13: IR Remote Control Robot                                    

 

 

(1) Description 

  

In this project, we will make IR remote control robot car! 

Press the button on IR remote control to drive robot car to move, and the 

corresponding state pattern is displayed on the 8*16 LED matrix. 

 

(2) Flow Chart 

The specific logic of infrared remote control robot car is shown below: 



                                                                                        
 

 189 

 

Initial setup 8X16 LED matrix 

Remote control Key Value Key state 

 
FF629D 

Go front（PWM set to 100） 

8*16 LED matrix shows front 

icon 

 
FFA857 

Back（PWM set to 100） 

8*16 LED matrix shows back 

icon 

 
FF22DD 

Rotate to left（PWM set to 200） 

8X16 LED matrix shows 

leftward icon 

 
FFC23D 

Rotate to right（PWM set to 

200） 

8X16 LED matrix shows 

rightward icon 

 

 

 

FF02FD 

Stop 

8X16 LED matrix shows“STOP” 

 

Based on the circuit design, we can start building our own remote control 

robot.  



                                                                                        
 

 190 

 

(3) Hook-up Diagram 

  

 

 

(4) Test Code 

/* 

keyestudio 4wd BT Car V2.0 

lesson 13 

remote control robot 



                                                                                        
 

 191 

http://www.keyestudio.com 

*/  

//Array, used to store the data of pattern, can be calculated by yourself or 

obtained from the modulus tool 

unsigned char start01[] = 

{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x80,0x40,0x20,0x10,0x08,0x04,

0x02,0x01}; 

unsigned char front[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char back[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x48,0x90,0x48,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char left[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00}; 

unsigned char right[] = 

{0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char STOP01[] = 

{0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A

,0x0E,0x00}; 



                                                                                        
 

 192 

unsigned char clear[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00}; 

#define SCL_Pin  A5  //Set clock pin to A5 

#define SDA_Pin  A4  //Set data pin to A4 

#define ML_Ctrl 4     //define direction control pin of B motor 

#define ML_PWM 5   //define PWM control pin of B motor 

#define MR_Ctrl 2    //define direction control pin of A motor 

#define MR_PWM 9   //define PWM control pin of A motor 

#include <IRremote.h>//function library of IR remote control 

int RECV_PIN = A0;// set the pin of IR receiver to A0 

IRrecv irrecv(RECV_PIN); 

long irr_val; 

decode_results results; 

void setup() 

{ 

  pinMode(ML_Ctrl, OUTPUT);//define direction control pin of B motor to 

OUTPUT 

  pinMode(ML_PWM, OUTPUT);//define PWM control pin of B motor to 

OUTPUT 

  pinMode(MR_Ctrl, OUTPUT);//define direction control pin of A motor to 

OUTPUT 



                                                                                        
 

 193 

  pinMode(MR_PWM, OUTPUT);//define PWM control pin of A motor to 

OUTPUT 

    Serial.begin(9600);//Start serial printing, baud rate is 9600 

  // In case the interrupt driver crashes on setup, give a clue 

  // to the user what's going on. 

  irrecv.enableIRIn(); // Start the receiver 

  Serial.println("Enabled IRin"); 

  //Set pin to output 

  pinMode(SCL_Pin,OUTPUT); 

  pinMode(SDA_Pin,OUTPUT); 

  //Clear the matrix display 

  matrix_display(clear); 

  matrix_display(start01); 

} 

void loop() 

 { 

  if (irrecv.decode(&results))  

 { 

    irr_val = results.value; 

    Serial.println(irr_val, HEX);//serial reads the IR remote signals 

    switch(irr_val) 

    { 



                                                                                        
 

 194 

      case 0xFF629D : car_front(); matrix_display(front); break; 

      case 0xFFA857 : car_back(); matrix_display(back); break; 

      case 0xFF22DD : car_left(); matrix_display(left); break; 

      case 0xFFC23D : car_right(); matrix_display(right); break; 

      case 0xFF02FD : car_Stop(); matrix_display(STOP01); break; 

    } 

        irrecv.resume(); // Receive the next value 

  } 

} 

void car_front()//car goes forward 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

level 

  analogWrite(ML_PWM,200);//Set PWM control speed of B motor to 20 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH level 

  analogWrite(MR_PWM,200);//Set PWM control speed of A motor to 20 

} 

void car_back()//car goes back 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 



                                                                                        
 

 195 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_left()//car turns left 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH level 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_right()//car turns right 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH 

level 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_Stop()//car stops 

{ 

  analogWrite(ML_PWM,0);//set PWM control speed of B motor to 0 



                                                                                        
 

 196 

  analogWrite(MR_PWM,0);//set PWM control speed of A motor to 0 

} 

//this function is used for dot matrix display 

void matrix_display(unsigned char matrix_value[]) 

{ 

  IIC_start();  //the function to call the data transmission 

  IIC_send(0xc0);  //Select address 

    for(int i = 0;i < 16;i++) //Pattern data has 16 bytes 

  { 

     IIC_send(matrix_value[i]); //data to convey patterns 

  } 

  IIC_end();   //end the transmission of patterns data 

  IIC_start(); 

  IIC_send(0x8A);  //display control, set pulse width to 4/16 

  IIC_end(); 

} 

//  the condition that data transmission starts 

void IIC_start() 

{ 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 



                                                                                        
 

 197 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

} 

// transmit data 

void IIC_send(unsigned char send_data) 

{ 

  for(char i = 0;i < 8;i++)  //Every character has 8 bits 

  { 

      digitalWrite(SCL_Pin,LOW);  //pull down the SCL_Pin to change the 

signal of SDA 

      delayMicroseconds(3); 

      if(send_data & 0x01)  //1 or 0 of byte  is used to set high and low 

level of SDA_Pin 

      { 

        digitalWrite(SDA_Pin,HIGH); 

      } 

      else 

      { 

        digitalWrite(SDA_Pin,LOW); 

      } 

      delayMicroseconds(3); 



                                                                                        
 

 198 

      digitalWrite(SCL_Pin,HIGH); //Pull up SCL_Pin to stop data 

transmission 

      delayMicroseconds(3); 

      send_data = send_data >> 1;  //Detect bit by bit, so move the data 

right by one bit 

  } 

} 

//the sign that data transmission ends 

void IIC_end() 

{ 

  digitalWrite(SCL_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

}//********************************************************* 

(5) Test Result 

Upload the code successfully on the keyestudio V4.0 board and then wire 

according to the connection diagram. After DIP switch is dialed to the right 



                                                                                        
 

 199 

end, we can use the infrared remote control to control the movement of 

the smart car . At the same time, the 8X16 LED light board displays the 

corresponding state pattern. 

 

 

Project 14: Bluetooth Remote Control                                  

 

(1) Description 

 

We’ve learned the basic knowledge of Bluetooth. And in this lesson, we 

will make a Bluetooth remote smart car. In this experiment, we default the 

HM-10 Bluetooth module as a Slave and the cellphone as a Host.  

keyes BT car is an APP rolled out by keyestudio team. You can control the 



                                                                                        
 

 200 

robot car by it readily. 

 

(2) Test APP 

Special note: before uploading the test code, you need to remove the 

Bluetooth module. Otherwise, the test code will fail to upload. You can 

reconnect the Bluetooth module when the code is uploaded successfully.   

/* 

keyestudio 4WD BT Car V2.0 

lesson 14.1 

Bluetooth test 

http://www.keyestudio.com 

*/  

char BLE_val; 

void setup()  

{ 

  Serial.begin(9600); 

} 

void loop()  

{ 

  if(Serial.available()>0) 

  { 

    BLE_val = Serial.read(); 



                                                                                        
 

 201 

    Serial.println(BLE_val); 

  } 

} 

//********************************************************* 

 

Upload test code on V4.0 development board and insert the Bluetooth 

module. Then we need to download the APP.  

 

For iOS system 

Search keyes BT car in App store 

 

After installation, enter its interface. 



                                                                                        
 

 202 

 

 

Click “Connect”to search and pair it with Bluetooth. After connecting 

well, click to enter the main page of 4WD smart car. 

 

 

 

 



                                                                                        
 

 203 

For Android System 

 

Enter Google play store to search for keyes 4wd 

 

Its interface is shown below: 

 

(3) Click on APP icon to search Bluetooth.  

 



                                                                                        
 

 204 

 

(4) Click“connect”below HMSoft, then the Bluetooth will be connected 

and its LED indicator will be always on. 

 

 

After successful connection, press the button of the Bluetooth APP, and 

the corresponding characters are displayed as shown below: 

 

 

 

 



                                                                                        
 

 205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Function 

 
match with connection HM-10 Bluetooth module 

 disconnect Bluetooth 

 

Control character Function 

Press: F 

Release: S 
robot car goes front; Release to stop  

 

Press: L 

Release: S 

Robot car turns left;  

Release to stop 

 

Press: R 

Release: S 

Robot car turns right; Release to 

stop 

 

Press: B 

Release: S 

Robot car goes back;  

Release to stop 

 

Click to start the mobile gravity sensing;  

click again to end this function 

 

Click to send “X”; 

Release to send“S” 

Enable  line tracking function;  

End this function 

 

Click to send “Y” ; 

Release to send“S” 

Start ultrasonic avoiding function;  

End this function 

 

Click to send“U” 

Release to send“S” 

Start Ultrasonic follow function; 

End this function 



                                                                                        
 

 206 

 

 

(3) Flow Chart 

 

 

 

(4) Hook-up Diagram 

 



                                                                                        
 

 207 

 

 

(5) Test Code 

/* 

keyestudio 4wd BT Car V2.0 

lesson 14 

Bluetooth Remote Control 

http://www.keyestudio.com 

*/  

//Array, used to store the data of pattern, can be calculated by yourself or 

obtained from the modulus tool 

unsigned char start01[] = 

{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x80,0x40,0x20,0x10,0x08,0x04,

0x02,0x01}; 

unsigned char front[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 



                                                                                        
 

 208 

unsigned char back[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x48,0x90,0x48,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char left[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00}; 

unsigned char right[] = 

{0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char STOP01[] = 

{0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A

,0x0E,0x00}; 

unsigned char clear[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00}; 

#define SCL_Pin  A5  //Set clock pin to A5 

#define SDA_Pin  A4  //Set data pin to A4 

unsigned char data_line = 0; 

unsigned char delay_count = 0; 

#define ML_Ctrl 4     //define direction control pin of B motor 

#define ML_PWM 5   //define PWM control pin of B motor 

#define MR_Ctrl 2    //define direction control pin of A motor 



                                                                                        
 

 209 

#define MR_PWM 9   //define PWM control pin of A motor 

char BLE_val; 

void setup()  

{ 

  Serial.begin(9600); 

  pinMode(ML_Ctrl, OUTPUT);//set direction control pin of B motor to 

OUTPUT 

  pinMode(ML_PWM, OUTPUT);//set PWM control pin of B motor to 

OUTPUT 

  pinMode(MR_Ctrl, OUTPUT);//set direction control pin of A motor to 

OUTPUT 

  pinMode(MR_PWM, OUTPUT);//Set PWM control pin of A motor to 

OUTPUT 

//Set pin to output 

  pinMode(SCL_Pin,OUTPUT); 

  pinMode(SDA_Pin,OUTPUT); 

  //Clear the matrix display 

  matrix_display(clear); 

  matrix_display(start01); 

} 

 

void loop()  



                                                                                        
 

 210 

{ 

  if(Serial.available()>0) 

  { 

    BLE_val = Serial.read(); 

    Serial.println(BLE_val); 

  } 

  switch(BLE_val) 

  { 

    case 'F': car_front(); matrix_display(front); break; 

    case 'B': car_back(); matrix_display(back); break; 

    case 'L': car_left(); matrix_display(left); break; 

    case 'R': car_right(); matrix_display(right); break; 

    case 'S': car_Stop();matrix_display(STOP01); break; 

  } 

 

} 

void car_front() 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH  

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH 



                                                                                        
 

 211 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_back() 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_left() 

{ 

  digitalWrite(ML_Ctrl,LOW);//set direction control pin of B motor to LOW 

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,HIGH);//set direction control pin of A motor to 

HIGH  

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_right() 

{ 

  digitalWrite(ML_Ctrl,HIGH);//set direction control pin of B motor to HIGH  

  analogWrite(ML_PWM,200);//set PWM control speed of B motor to 200 

  digitalWrite(MR_Ctrl,LOW);//set direction control pin of A motor to LOW 



                                                                                        
 

 212 

  analogWrite(MR_PWM,200);//set PWM control speed of A motor to 200 

} 

void car_Stop() 

{ 

  analogWrite(ML_PWM,0);//set PWM control speed of B motor to 0 

  analogWrite(MR_PWM,0);//set PWM control speed of A motor to 0 

} 

//this function is used for dot matrix display 

void matrix_display(unsigned char matrix_value[]) 

{ 

  IIC_start();  //the function that calls the data transmission 

  IIC_send(0xc0);  //Select address 

    for(int i = 0;i < 16;i++) //Pattern data has 16 bytes 

  { 

     IIC_send(matrix_value[i]); //data to convey patterns 

  } 

  IIC_end();   //end the transmission of patterns data 

  IIC_start(); 

  IIC_send(0x8A);  //display control, set pulse width to 4/16  IIC_end(); 

} 

// the condition of data transmission starts  

void IIC_start() 



                                                                                        
 

 213 

{ 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

} 

// transmit data 

void IIC_send(unsigned char send_data) 

{ 

  for(char i = 0;i < 8;i++)  //Every character has 8 bits 

  { 

      digitalWrite(SCL_Pin,LOW);  //pull down the SCL_Pin to change the 

signal of SDA 

      delayMicroseconds(3); 

      if(send_data & 0x01)  //1 or 0 of byte is used to set high and low 

level of SDA_Pin 

      { 

        digitalWrite(SDA_Pin,HIGH); 

      } 

      else 



                                                                                        
 

 214 

      { 

        digitalWrite(SDA_Pin,LOW); 

      } 

      delayMicroseconds(3); 

      digitalWrite(SCL_Pin,HIGH); //Pull up SCL_Pin to stop data 

transmission 

      delayMicroseconds(3); 

      send_data = send_data >> 1;  //Detect bit by bit, so move the data 

right by one bit 

  } 

} 

//the sign that data transmission ends 

void IIC_end() 

{ 

  digitalWrite(SCL_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 



                                                                                        
 

 215 

} //************************************************************************** 

 

(6) Test Result 

Upload the code on the V4.0 board. And then we stack the expansion 

board on it and wire them according to the connection diagram. After 

power-on, the DIP switch will be dialed to the“ON”end. And after 

connecting Bluetooth successfully, we can use the APP to control the smart 

car to move. 

 

Project 15: Multi-purpose Bluetooth Robot                               

 

(1) Description 

In previous projects, the robot car only performs a single function. 

However, in this lesson, we will integrate all of its functions via Bluetooth 

control. 

 

Here is a simple flow chart of multi-purpose robot car for your reference. 

 



                                                                                        
 

 216 

 

 

 

 

(2) Connection Diagram 

  

 



                                                                                        
 

 217 

(3) Test Code 

 

/* 

keyestudio 4wd BT Car V2.0 

lesson 15 

Multifunctional Robot car 

http://www.keyestudio.com 

*/  

unsigned char start01[] = 

{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x80,0x40,0x20,0x10,0x08,0x04,

0x02,0x01}; 

unsigned char front_matrix[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x12,0x09,0x12,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char back_matrix[] = 

{0x00,0x00,0x00,0x00,0x00,0x24,0x48,0x90,0x48,0x24,0x00,0x00,0x00,0x00,

0x00,0x00}; 

unsigned char left_matrix[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x44,0x28,0x10,0x44,0x28,0x10,0x44,0x28,

0x10,0x00}; 

unsigned char right_matrix[] = 

{0x00,0x10,0x28,0x44,0x10,0x28,0x44,0x10,0x28,0x44,0x00,0x00,0x00,0x00,



                                                                                        
 

 218 

0x00,0x00}; 

unsigned char STOP01[] = 

{0x2E,0x2A,0x3A,0x00,0x02,0x3E,0x02,0x00,0x3E,0x22,0x3E,0x00,0x3E,0x0A

,0x0E,0x00}; 

unsigned char clear[] = 

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00}; 

 

#define SCL_Pin  A5 

#define SDA_Pin  A4 

 

#include "SR04.h" 

#define TRIG_PIN 12 

#define ECHO_PIN 13 

SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN); 

long distance,distance1,distance2,distance3; 

 

const int left_ctrl = 4; 

const int left_pwm = 5; 

const int right_ctrl = 2; 

const int right_pwm = 9; 

const int sensor_l = 6; 



                                                                                        
 

 219 

const int sensor_c = 7; 

const int sensor_r = 8; 

int l_val,c_val,r_val; 

const int servopin = 10; 

char BLE_val; 

 

void setup() { 

  Serial.begin(9600); 

  //irrecv.enableIRIn(); // Start the receiver 

  servopulse(servopin,90); 

  pinMode(left_ctrl,OUTPUT); 

  pinMode(left_pwm,OUTPUT); 

  pinMode(right_ctrl,OUTPUT); 

  pinMode(right_pwm,OUTPUT); 

  pinMode(sensor_l,INPUT); 

  pinMode(sensor_c,INPUT); 

  pinMode(sensor_r,INPUT); 

  pinMode(SCL_Pin,OUTPUT); 

  pinMode(SDA_Pin,OUTPUT); 

  //Clear the screen 

  matrix_display(clear); 

  matrix_display(start01); 



                                                                                        
 

 220 

} 

 

void loop() { 

  if(Serial.available()>0) 

  { 

    BLE_val = Serial.read(); 

    Serial.println(BLE_val); 

  } 

  switch(BLE_val) 

  { 

    case 'F': front(); matrix_display(front_matrix); break; 

    case 'B': back(); matrix_display(back_matrix); break; 

    case 'L': left(); matrix_display(left_matrix); break; 

    case 'R': right(); matrix_display(right_matrix); break; 

    case 'S': Stop(); matrix_display(STOP01); break; 

    case 'X': tracking(); break; 

    case 'Y': avoid();break; 

    case 'U': follow_car();break; 

  } 

} 

 

void avoid() 



                                                                                        
 

 221 

{ 

  matrix_display(start01); 

  int track_flag = 0; 

  while(track_flag == 0) 

  { 

    distance1=sr04.Distance(); 

    if((distance1 < 20)&&(distance1 != 0)) 

    { 

      Stop2(); 

      delay(100); 

      servopulse(servopin,180); 

      delay(500); 

      distance2=sr04.Distance(); 

      delay(100); 

      servopulse(servopin,0); 

      delay(500); 

      distance3=sr04.Distance(); 

      delay(100); 

        if(distance2 > distance3) 

      { 

        left(); 

        servopulse(servopin,90); 



                                                                                        
 

 222 

      } 

      else 

      { 

        right(); 

        servopulse(servopin,90); 

      } 

    } 

    else 

    { 

      front(); 

    } 

    if(Serial.available()>0) 

    { 

      BLE_val = Serial.read(); 

      if(BLE_val == 'S') 

      { 

        track_flag = 1; 

      } 

    } 

  } 

} 

 



                                                                                        
 

 223 

void follow_car() 

{ 

  matrix_display(start01); 

  servopulse(servopin,90); 

  int track_flag = 0; 

  while(track_flag == 0) 

  { 

    distance = sr04.Distance(); 

   

    if(distance<8) 

    { 

      back2(); 

    } 

    else if((distance>=8)&&(distance<13)) 

    { 

      Stop(); 

    } 

    else if((distance>=13)&&(distance<35)) 

    { 

      front(); 

    } 

    else 



                                                                                        
 

 224 

    { 

      Stop(); 

    } 

    if(Serial.available()>0) 

    { 

      BLE_val = Serial.read(); 

      if(BLE_val == 'S') 

      { 

        track_flag = 1; 

      } 

    } 

  } 

} 

 

void servopulse(int servopin,int myangle) 

{ 

  for(int i=0;i<30;i++){ 

    int pulsewidth = (myangle*11)+500; 

    digitalWrite(servopin,HIGH); 

    delayMicroseconds(pulsewidth); 

    digitalWrite(servopin,LOW); 

    delay(20-pulsewidth/1000); 



                                                                                        
 

 225 

  } 

} 

 

void tracking() 

{ 

  matrix_display(start01); 

  int track_flag = 0; 

  while(track_flag == 0) 

  { 

    l_val = digitalRead(sensor_l); 

    c_val = digitalRead(sensor_c); 

    r_val = digitalRead(sensor_r); 

   

    if(c_val == 1) 

    { 

      front2(); 

    } 

    else 

    { 

      if((l_val == 1)&&(r_val == 0)) 

      { 

        left(); 



                                                                                        
 

 226 

      } 

      else if((l_val == 0)&&(r_val == 1)) 

      { 

        right(); 

      } 

      else 

      { 

        Stop(); 

      } 

    } 

    if(Serial.available()>0) 

    { 

      BLE_val = Serial.read(); 

      if(BLE_val == 'S') 

      { 

        track_flag = 1; 

      } 

    }  

  } 

} 

 

void front() 



                                                                                        
 

 227 

{ 

  digitalWrite(left_ctrl,HIGH); 

  analogWrite(left_pwm,220); 

  digitalWrite(right_ctrl,HIGH); 

  analogWrite(right_pwm,190); 

} 

void front2() 

{ 

  digitalWrite(left_ctrl,HIGH); 

  analogWrite(left_pwm,75); 

  digitalWrite(right_ctrl,HIGH); 

  analogWrite(right_pwm,70); 

} 

void back() 

{ 

  digitalWrite(left_ctrl,LOW); 

  analogWrite(left_pwm,220); 

  digitalWrite(right_ctrl,LOW); 

  analogWrite(right_pwm,190); 

} 

void back2() 

{ 



                                                                                        
 

 228 

  digitalWrite(left_ctrl,LOW); 

  analogWrite(left_pwm,110); 

  digitalWrite(right_ctrl,LOW); 

  analogWrite(right_pwm,90); 

} 

void left() 

{ 

  digitalWrite(left_ctrl,LOW); 

  analogWrite(left_pwm,220); 

  digitalWrite(right_ctrl,HIGH); 

  analogWrite(right_pwm,190); 

} 

void right() 

{ 

  digitalWrite(left_ctrl,HIGH); 

  analogWrite(left_pwm,220); 

  digitalWrite(right_ctrl,LOW); 

  analogWrite(right_pwm,190); 

} 

void Stop() 

{ 

  analogWrite(left_pwm,0); 



                                                                                        
 

 229 

  analogWrite(right_pwm,0); 

} 

void Stop2() 

{ 

  digitalWrite(left_ctrl,LOW); 

  analogWrite(left_pwm,200); 

  digitalWrite(right_ctrl,LOW); 

  analogWrite(right_pwm,200); 

  delay(50); 

  analogWrite(left_pwm,0); 

  analogWrite(right_pwm,0); 

} 

 

//this function is used for dot matrix display 

void matrix_display(unsigned char matrix_value[]) 

{ 

  IIC_start();  // the function to transmit data 

  IIC_send(0xc0);  //select address 

    for(int i = 0;i < 16;i++) //pattern data has 16 bytes 

  { 

     IIC_send(matrix_value[i]); //data transmits patterns 

  } 



                                                                                        
 

 230 

  IIC_end();   //end the transmission of patterns data 

  IIC_start(); 

  IIC_send(0x8A);  //display the control, set pulse width to 4/16 

  IIC_end(); 

} 

// The condition of data transmission starts 

void IIC_start() 

{ 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

} 

// transmit data 

void IIC_send(unsigned char send_data) 

{ 

  for(char i = 0;i < 8;i++)  //Every character has 8 bits 

  { 

      digitalWrite(SCL_Pin,LOW);  //pull down the SCL_Pin to change the 

signal of SDA 



                                                                                        
 

 231 

      delayMicroseconds(3); 

      if(send_data & 0x01)  // 1 or 0 of byte is used to set high and low 

level of SDA_Pin 

      { 

        digitalWrite(SDA_Pin,HIGH); 

      } 

      else 

      { 

        digitalWrite(SDA_Pin,LOW); 

      } 

      delayMicroseconds(3); 

      digitalWrite(SCL_Pin,HIGH); //pull up the SCL_Pin to stop 

transmitting data      delayMicroseconds(3); 

      send_data = send_data >> 1;  //Detect bit by bit, so move the data 

right by one bit detect bit by bit, move data  

  } 

} 

//the sign that data ends transmitting 

void IIC_end() 

{ 

  digitalWrite(SCL_Pin,LOW); 

  delayMicroseconds(3); 



                                                                                        
 

 232 

  digitalWrite(SDA_Pin,LOW); 

  delayMicroseconds(3); 

  digitalWrite(SCL_Pin,HIGH); 

  delayMicroseconds(3); 

  digitalWrite(SDA_Pin,HIGH); 

  delayMicroseconds(3); 

}//********************************************************* 

 

 

(4) Test Result 

Uploading code to development board, plugging in and turning on it , the 

4WD robot can not only go forward and back but turn left and right. 

Moreover, it is known that the mobile APP, connected to Bluetooth 

successfully, can be used to control the movement of the robot. 

 

 

9. Resources                                                            

 

 

Wiki page: https://wiki.keyestudio.com/Main_Page 

Official website: https://keyestudio.com/ 

Assembly Video Link: http://video.keyestudio.com/ks0470/  

https://wiki.keyestudio.com/Main_Page
https://keyestudio.com/


                                                                                        
 

 233 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


