Arduino Introduction

Overview

What is Arduino?

Arduino is a tool for making computers that can sense and control more of the physical world
than your desktop computer. It's an open-source physical computing platform based on a simple
microcontroller board, and a development environment for writing software for the board.
Arduino can be used to develop interactive objects, taking inputs from a variety of switches or
sensors, and controlling a variety of lights, motors, and other physical outputs. Arduino projects
can be stand-alone, or they can be communicated with software running on your computer (e.g.
Flash, Processing, MaxMSP.) The boards can be assembled by hand or purchased preassembled;
the open-source IDE can be downloaded for free.

The Arduino programming language is an implementation of Wiring, a similar physical computing
platform, which is based on the Processing multimedia programming environment.

Feature

e Schematic design of the open source development interface free download, and also
according to the needs of their own changes

e Download the program is simple and convenient.

e Simply with the sensor, a wide range of electronic components connection (such as: LED
light, buzzer, keypad, photoresistor, etc.), make all sorts of interesting things.

e Using the high-speed micro-processing controller (ATMEGA328).

e The development of language and development environment is very simple, easy to
understand, very suitable for beginners to learn.

Performance

Digital /O 0~13.

e Analogl/O 0v~5.(R3is0~7)
e Suppor

e Input voltage: when connected to the USB without external power supply or external 5 v

output and external power input.

e Atmel Atmega328 micro-processing controller. Because of its many supporters, the
company has developed 32-
Arduino size: width of 70 mm X high 54 mm.

Special Port

1. VIN. The input voltage to the Arduino board when it's using an external power source (as
opposed to 5 volts from the USB connection or other regulated power source). You can

2.

supply voltage through this pin, or, if supplying voltage via the power jack, access it through
this pin.
AREF. Reference voltage for the analog inputs. Used with analogReference().

SainSmart UNO R3

What’s UNO R3?
The Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic

resonator, a USB connection, a power jack, an ICSP header, and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a computer with a USB

cable or power it with a AC-to-DC adapter or battery to get started.

Performance

Revision 3 is the last SainSmart UNO development board version.

Parameter

3.3V/5V Supply Voltage and 10 Voltage can be switched at the same time.

More 3.3V modules supported, such as Xbee module, Bluetooth module, RF module, GPRS
module, GPS module, LCD5110 Backlight and so on, but the original version can only support
5V 10.

Controller uses SMD MEGA328P-AU chip. Add A6/A7 port.

5V Electric current : 500MA

3.3V Electric current : 50MA

Input Voltage: 7-12V

Improvement of R3

Working voltage 3.3V/5V is optional.

Arduino can only work at 5V voltage. When it comes to 3.3V Level module, 10 can’t be
connected to it. The Level should be changed, like the SD card, Bluetooth module and so on.
Sainsmart UNO R3 can work at 3.3V voltage by switching on the button. At this time, 10 port
is 3.3V and it can work with 3.3V Level module. (R3 can directly use the electronic building
blocks on 1/ O port and elicit G, V, S)

Arduino C Grammar

Arduino grammar is built on the basis of C/C + +, in fact is also the basic C grammar, Arduino
grammar not only put some related parameters Settings are function change, we have no need to
understand his bottom, let us to know AVR micro control unit (MCU) friend can also easy to fit in.

So here I'll simple comment the Arduino grammar.

Control Structures
If
if...else
for
switch case
while
do... while
break
continue
return

goto

Further Syntax
{}
/!
/**/

Operators
++

&&
I

Data type
boolean
char
byte
int
unsigned int
long
unsigned long
float
double
string
array
void

Constant
HIGH | LOW Said digital 10 port level, HIGH Said high level(1), LOW Said low electric
flat(0).
INPUT | OUTPUT Said digital 10 port direction, INPUT Said input (high impedance state)
OUTPUT Said output (AVR can provide 5 v voltage and ma current).
TURE | FALSE true(1) , false(0) .

All above are the basic ¢ grammar words and symbols, everybody can understand, and the
specific use can combine experimental procedure.

Structure

e void setup()
The setup() function is called when a sketch starts. Use it to initialize variables, pin modes, start
using libraries, etc. The setup function will only run once, after each power up or reset of the
Arduino board.

e void loop()
After creating a setup() function, which initializes and sets the initial values, the loop() function
does precisely what its name suggests, and loops consecutively, allowing your program to change
and respond. Use it to actively control the Arduino board.

Function

e Digital I/O
pinMode(pin, mode) pin 0~13, mode is input or output.
digitalWrite(pin, value) pin 0~13, value is HIGH or LOW. int
digitalRead(pin) pin 0~13, value is HIGH or LOW.

e Analogl/O
int analogRead(pin) pin 0~5.
analogWrite(pin, value) pin 3, 5, 6, 9, 10, 11, value is 0 to 255

Time

delay(ms)Pauses the program for the amount of time (in miliseconds) specified as parameter.
(There are 1000 milliseconds in a second.)(unit ms).

delayMicroseconds(us)

Math

min(x, y) minimum value

max(x, y) maximum value

abs(x) absolute value

constrain(x, a, b) Constraint function, lower limit a upper limit b, x must be between a & b to be
returned

map(value, fromLow, fromHigh, toLow, toHigh)

pow(base, exponent) extraction of square root

sq(x) square

sqrt(x) Square root

Chapter 1 Hello World!

In this chapter, we will learn use Arduino IDE serial interface tools to show the contents that we
want to display in the computer.

Example code:

void setup()

{

Serial.begin(9600);// opens serial port, sets data rate to 9600 bps
Serial.printin("Hello World!");

1

void loop()
{

1

Explain:

Serial.begin(9600); The comment says 9600 bps, and just so you know bps stands for
bits-per-second (we will refer to this as the baud rate). Communicate with computer, you may
choose these rate “300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200".

Operation:

1) Download code to arduino.

2) After download, click “tool”, pick up relevant arduino board, and relevant com. Then click
“serial Monitor”, on the new open up window’s bottom right, choose the relevant rate.

9 helloWorld | Arduino 0022

File Edit Sketch Toels He

hEZ3
*% helloforld
)

|3

void setup()

Serial. begig (AB00): apans zerlal port, sets data rate to 9600 bp=s

woid Loop()

i)
Hello World!)
I
this number must be the same =
L83
o
|
""""" [#] Atosorall o line ending V|i| 9500 baud \}l
| P

Chapter 2 Blink LED

Small LED lamp experiment is the basis of comparison of the experimental one, this time we use
the motherboard comes with 13 feet of LED lights to complete the experiment, the experimental
equipment we need is the Arduino which each experiment must have and USB download cable.

Next we connect small lamp in accordance with the following experimental schematic physical
map.

LED)

= = 3= e = e
T~

—
TGN [

ATV

Y] —

induj Hopeuy

SainSmart

Digital Input/Output

A% EAE

I

Accordance with the good circuit after the link above figure, you can start writing programs, and
we let the small LED lights flashing. Lighting on for one second and off for one second. This
program is very simple. This is Arduino own routines Blink.

Example code:

Int ledPin = 13; //define pin 13
Void setup()
{

PinMode(ledPin,OUTPUT); // define interface is output
}
Void loop()

{
digitalwrite(ledPin, HIGH) ; //light up led lamp
delay(1000) ; // delay 1s
digitalWrite(ledPin, LOW); // go out led lamp
delay (1000) ; // delay 1s
}

After downloading the program, you can see our 13-foot LED lights flashing, so that our small

lights flicker experiment is complete.

Chapter3 LED Blink

light emitting diode

What'’s light emitting diode?

The light emitting diode referred to as LED. By gallium (Ga) and arsenic (AS) and phosphorus (P)
made of a compound of the diode, when the electron and hole recombination can radiate visible
light, and thus can be used to prepare a light-emitting diode in the circuit and the instrument as
the indicator, or the composition of the text or digital display. Ga As P diode hair red, gallium

phosphide diode green silicon carbide diode yellow.

A flashing LED lights experiment

Experiment component
e [LEDIlamp:1
e 220Qresistor: 1
e Breadboard & Jumper wires

Connect your circuit as the below diagram

uE 321094 7k 5N 230
1133 IeITaL > x

EEC x
33 =3 =
aaa aa a

- TX

= < SainSmart = rurg

- www. saineman com
ANALOG T

Example code:

int ledPin=8; //set 10 pin of LED in control
void setup()

{
pinMode(ledPin,OUTPUT);//set digital pin 10 is OUTPUT

}

void loop()

{
digitalWrite(ledPin,HIGH); //set PIN8 is HIGH , about 5V
delay(1000); //delay 1000ms, 1000ms = 1s
digitalWrite(ledPin,LOW); //set PIN8 is LOW, OV
delay(1000); //delay 1000ms, 1000ms = 1s

1

setup()

The setup() function is called when a sketch starts. Use it to initialize variables, pin modes, start
using libraries, etc. The setup function will only run once, after each powerup or reset of the
Arduino board.

loop()

After creating a setup() function, which initializes and sets the initial values, the loop() function
does precisely what its name suggests, and loops consecutively, allowing your program to change
and respond. Use it to actively control the Arduino board.

Chapter4 PWM

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means.
Digital control is used to create a square wave, a signal switched between on and off. This on-off
pattern can simulate voltages in between full on (5 Volts) and off (0 Volts) by changing the
portion of the time the signal spends on versus the time that the signal spends off. The duration
of "on time" is called the pulse width. To get varying analog values, you change, or modulate, that
pulse width. If you repeat this on-off pattern fast enough with an LED for example, the result is as
if the signal is a steady voltage between 0 and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This duration or period is
the inverse of the PWM frequency. In other words, with Arduino's PWM frequency at about
500Hz, the green lines would measure 2 milliseconds each. A call to analogWrite() is on a scale of
0 - 255, such that analogWrite(255) requests a 100% duty cycle (always on), and analogWrite(127)
is a 50% duty cycle (on half the time) for example.

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)
Sv

Ov

25% Duty Cycle - analogWrite(64)

OV ——]

50% Duty Cycle
|

Sv

75% Duty Cycle - analogWrite(191)
SV 1) 1
L Ll
analogWrite(255)
| |

For the Arduino, you write a value from 0 to 255 on a PWM pin, and the Arduino library will
cause the pin to output a PWM signal whose on time is in proportion to the value written.
When it comes time for us to actually write an output voltage, the 0-255 value lacks meaning.

What we want is many cases is a voltage. For our purposes, we will assume the Arduino is

analogWrite(127)
| L

—

-

100% Duty Cycle
Sv ‘ i :

Ov

running at Vcc = 5 volts. In that case, a value of 255 will also be 5 volts. We can then easily
convert the desired voltage to the digital value needed using simple division. We first divide the
voltage we want by the 5 volts maximum. That gives us the percentage of our PWM signal. We
then multiply this percentage by 255 to give us our pin value. Here is the formula:

Pin Value (0-255) = 255 * (AnalogWrite / 5);

Arduino use analogWrite()

analogWrite() : Writes an analog value (PWM wave) to a pin. Can be used to light a LED at
varying brightnesses or drive a motor at various speeds. After a call to analogWrite(), the pin will
generate a steady square wave of the specified duty cycle until the next call to analogWrite() (or a
call to digitalRead() or digitalWrite() on the same pin). The frequency of the PWM signal is
approximately 490 Hz.

On most Arduino boards (those with the ATmegal68 or ATmega328), this function works on pins
3,5,6,9, 10, and 11. On the Arduino Mega, it works on pins 2 through 13. Older Arduino boards
with an ATmega8 only support analogWrite() on pins 9, 10, and 11.The Arduino Due supports
analogWrite() on pins 2 through 13, plus pins DACO and DAC1. Unlike the PWM pins, DACO and
DAC1 are Digital to Analog converters, and act as true analog outputs.You do not need to call
pinMode() to set the pin as an output before calling analogWrite().The analogWrite function has
nothing to do with the analog pins or the analogRead function.

Syntax
analogWrite(pin, value)

Parameters

pin: the pin to write to.

value: the duty cycle: between 0 (always off) and 255 (always on).
Notes and Known Issues

The PWM outputs generated on pins 5 and 6 will have higher-than-expected duty cycles. This is
because of interactions with the millis() and delay() functions, which share the same internal
timer used to generate those PWM outputs. This will be noticed mostly on low duty-cycle
settings (e.g 0 - 10) and may result in a value of 0 not fully turning off the output on pins 5 and 6.

Experiment component:
1. 1x220Q resistor

2. 1xLED
3. 1 x Breadboard

Connect your circuit as the below diagram.

LR N R I B D B L B I B B B D R D R
* 8 8 " 9" 00 " P P RN ® 9 9 9 0 " 8 " P P PO NN
L I L N B L L L I R B I D I R B B
L U L L L B e LA B B R I L R D L
L L R L B D R e B e 9 ® % 0 9 F P PR YD
" 9 " 0 " P O P O 0D * 9 9 & 0 " 0 S S O e P RO
¢t s o e s e v v e e s e e]l oo e 000000000
LR B L B B B L B R B B B R B B B L B B R B R B B DR L B
L B B B R R B D R L B L O B R B B B B B R R B B B
v 0 09 " O POV S e DY L ® & & 0 0 " S 8 0 e 0
L e . " e 00 L] L B " o " 00
. e " 0 9 . 0 L B L L L S B B

76
DIGITAL

Example code:

int brightness = 0; //define original value of brightness, the value is brightness of LED.
int fadeAmount=5; //define fadeAmount, the value is the amount of brightness variations’
change.

void setup() {

pinMode(9, OUTPUT);// set pin9 is output

void loop() {

analogWrite(9, brightness);//write the value of brightness in pin9

brightness = brightness + fadeAmount;//change the value of brightness

if (brightness == 0 | | brightness == 255) {

fadeAmount = -fadeAmount ; // roll over the brightness between the highest and
lowest

}

delay(30); //delay 30ms

Chapter5 Advertising LED

Experiment component:
e LEDIlamp: 6
e 220Q resistors: 6
e Breadboard & Jumper wires

Connect your circuit as the below diagram.

=1 1
— = —
—f |—
Hi
SainSmart ¢ =
N
.;' P
e o W
p— - - 4'1'1'0 h." ;
i) % 5 Y an a O
. N =0 I i
= b M i, I\.l”
— i 7 A o~
40 N i
— M - Sahs ~
= AT
— . —AAA— 11
. " L L L -
!
L L LA LA B

LR I O I R O A A A R
LA AR B R EREERERE B8 B8 LR
"0 s EIIIEEENIIIIID ¢ EEIDD ¢ EEEED ¢ 6§ 6 e e

o |)

-
.
e e
.
-

" e e e e . . LR .

L B I B A B L L LA - e e " e L A L

sssvessvssssflecen s s wPIfe o = s« vs 00

sesseasssvessflece s v miljns TIf= s oo

.. L A
v
L

¢+ SainSmart = PuRg

Example code

Program code is in the advertising lights program folder. Double-click to open and you will see a
led2 folder, open it, you will find out a led2.pde file. Double-click the icon to open it. Then you
will see that it is the arduino programming software window with the experimental program
code.

//set in Led’s digital 10 pin control

int Ledl = 1;
int Led2 = 2;
int Led3 = 3;
int Led4 = 4;
int Led5 = 5;
int Led6 = 6;

//led lamp run the example 1 program
void style_1(void)
{
unsigned char j;
for(j=1;j<=6;j++)//every 200ms light up one of led lamps with 1~6 pin in turn
{
digitalWrite(j,HIGH);//light up the led lamps with j pin
delay(200);//delay 200ms
}
for(j=6;j>=1;j--)//every 200ms got out one of led lamps with 6~1 pin in turn
digitalWrite(j,LOW);//go out the led lamps with j pin
delay(200);//delay 200ms

}

//led lamp blink example program
void flash(void)
{
unsigned char j,k;
for(k=0;k<=1;k++)//blink twice
{
for(j=1;j<=6;j++)//light up led lamps with 1~6 pin
digitalWrite(j,HIGH);//light up led lamp with j pin
delay(200);//delay 200ms
for(j=1;j<=6;j++)//go out the led lamp with 1~6 pin
digitalWrite(j,LOW);//go out the led lamp with j pin
delay(200);//delay 200ms

}

//led lamp run the example 2 program
void style_2(void)
{

unsigned char j,k;

k=1;//setkis 1
for(j=3;j>=1;j--)
{
digitalWrite(j,HIGH);//light up
digitalWrite(j+k,HIGH);//light up
delay(400);//delay 400ms
k +=2;//k plus 2
}
k=5;//setkis 5
for(j=1;j<=3;j++)
{
digitalWrite(j,LOW);//go out
digitalWrite(j+k,LOW);//go out
delay(400);//delay 400ms
k -=2;//k sub 2
1
1

// led lamp run the example 3 program

void style_3(void)

{
unsigned char j,k;//led lamp run the example 3 program
k=5;//setkis 5
for(j=1;j<=3;j++)

{
digitalWrite(j,HIGH);//light up
digitalWrite(j+k,HIGH);//light up
delay(400);//delay 400ms
digitalWrite(j,LOW);//go out
digitalWrite(j+k,LOW);//go out
k-=2;//k sub 2
}
k=3;//set kis 3
for(j=2;j>=1;j--)
{
digitalWrite(j,HIGH);//light up
digitalWrite(j+k,HIGH);//light up
delay(400);//delay 400ms
digitalWrite(j,LOW);//go out
digitalWrite(j+k,LOW);//go out
k +=2;//k plus 2

}
void setup()

{

unsigned char i;
for(i=1;i<=6;i++)//set 1~6 pin output in turn
pinMode(i,OUTPUT);//set i pin output

}
void loop()

{
style_1();//example 1
flash();//blink
style_2();//example 2
flash();//blink
style_3();//example 3
flash();//blink

}

Example code used: for(i=1;i<=6;i++)//set 1~6 pin output in turn
pinMode(i,OUTPUT);//set i pin output

The “for” statement is used to repeat a block of statements enclosed in curly braces. An
increment counter is usually used to increment and terminate the loop. The for statement is
useful for any repetitive operation, and is often used in combination with arrays to operate on
collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);

}

parenthesis

declare variable (optional)

initialize test incrementor /
" decrement /

for(int x = 0; x < 100; x++) {
println(x); // prints 0 to 99
The initialization happens first and exactly once. Each time through the loop, the condition is

tested; if it's true, the statement block, and the increment is executed, then the condition is

tested again. When the condition becomes false, the loop ends.

Chapter6 Traffic light

Experiment component:
e Red, Green, Yellow led lamp: 3
e 220Q resistor: 3
e Breadboard & Jumper wires

Connect your circuit as the below diagram.

: é'r -
SainSmart "¢ = T e == _:E:?E'::::: SR

0

v
AAA
V'

-

Example code:

Program code is in the traffic lights program folder. Double-click to open and you will find out a
trafficLed.pde file. Double-click the icon to open it. Then you will see that it is the arduino
programming software window with the experimental program code.

int ledred=10; //define digital pin10 red

int ledyellow=7; //define digital pin7 yellow
int ledgreen=4; //define digital pin4 green
void setup()

{
pinMode(ledred,OUTPUT);//set red pin output
pinMode(ledyellow,OUTPUT);// set yellow pin output
pinMode(ledgreen,OUTPUT);// set green pin output

}

void loop()

{

digitalWrite(ledred,HIGH);//light up red lamp
delay(1000);//delay 1000 ms=1s
digitalWrite(ledred,LOW);//go out red lamp

digitalWrite(ledyellow,HIGH);//light up yellow lamp
delay(200);//delay 200 ms//
digitalWrite(ledyellow,LOW);//go out
digitalWrite(ledgreen,HIGH);//light up green lamp
delay(1000);//delay 1000 ms
digitalWrite(ledgreen,LOW);//go out

1l 2 3

Chapter7 Buzzer

What'’s buzzer?

The buzzer is one integrated electronic transducers, DC voltage supply, widely used in computers,
printers, copiers, alarm, electronic toys, automotive electronic equipment, telephones, timers
and other electronic products for sound devices.

They can be divided into the: active buzzer (containing driver line) and passive buzzer (external
drive) in their drive different way, teach you to distinguish between active buzzer and passive
buzzer. A small buzzer for sale on the market now because of its small size (diameter is only
11mm), light weight, low price, solid structure, while widely used in various electrical equipment
with sound, electronic production and microcontroller circuits. Appearance of active the buzzer
and passive buzzer like a, b shown. a) active b) passive.

_ 1 - omE i,] W B4
\“______.d :\‘__-"
= T

a) :) b)

From the figure a, b appearance watching, the two buzzers seems to the same, but a closer look,
the height of the two slight difference active buzzer a height of 9mm, passive buzzer b, a height

of 8 mm. As facing up to two buzzers’ pin County it can be seen that there are a green circuit
board is passive buzzer, no circuit board using vinyl enclosed one is active buzzer. Further
determine the active and passive buzzer multimeter resistance profile Rxl file test: use a black
pen touch buzzer’s pin "+", red pen touch in the other pin back and forth, If you feel a click,
cracking sound and resistance is only 8Q

(Or 16Q)) which is a passive buzzer; continuing sound can issue, and the resistance is more than
hundreds of Europe that is active buzzer. Active buzzer directly connected to the rated power
(indicate on the new buzzer’s label) can be continuous sound; rather passive buzzer and
electromagnetic speaker needs to be connected to the audio output circuit can vocalization.
Buzzer also can be divided into according to the constructed different,: the electromagnetic
buzzer and piezoelectric buzzer;

Connect your circuit as the below diagram.
The buzzer used in this experiment with the internal drive. Circuit the buzzer positive connect
directly into the digital port 13. GND socket connected to the negative terminal of the buzzer.

.- L] L] -
Pes e L
Fe s e 8w L B B B B
Few e e L
e "9 " 89w L B B
LI B L B
Fs " " " 9w L L B B B el
e " 8 UL B B B B el
LR B L B
Fe s 8w s L L I
L B B R B L B B
- - -
L B B L B

13 7
PIGITAL

]
i
- E
3
A

o SainSmart -
I(;F

~ WWW_sainsmart.com
= PONER ANALOC IN .
b

-]
mEVGnd¥in DL 2 34 S

Buzzer analog ambulance siren sound experiment

Experiment component:

Buzzer:1

Breadboard & Jumper wires

Connect your circuit as the below diagram.

- eew

L L B
L

L B L L B L B
LU L B B D L B B B AR

LB B R R B B B B B R R R R B L L B

L L B B L B O I B B B
L L B B B B B B O B B R B

LU L R L B B B
LA L B B B R B B el
L B B B B B B e
L L B B B B B AR
LA B B L B L L
L B B B L B B

T ¥ 9 99 YT YT Y FYY YYD
L A B B B B R B A R R B B R AR R B R B R R
T O 0 9 P OOV YDN
L L B S B AR B B L R L B L B B L LB B
LR R B B R R R L R L R R R L R L R L
® 9 9 9P 9T TP O YT YYD

L A L R O LA B L B
L LR B L

L
L B

.4
]
]

SainSmart

- TX
- R

www.saingmart.com

Example code

7;//set buzzer’s digital pin 10 in control

int buzzer

void setup()

pinMode(buzzer,OUTPUT);//set digital pin 10 OUTPUT

void loop()

unsigned char i,j;//define i

while(1)

{

0;i<80;i++)// Output a frequency of sound

for(i

{ digitalWrite(buzzer,HIGH);//so
und delay(1);//delay 1ms
digitalWrite(buzzer,LOW);//mute
delay(1);//delay 1ms
}
for(i=0;i<100;i++)// Output the other frequency of sound
{ digitalWrite(buzzer,HIGH);//so
und delay(2);//delay 2ms
digitalWrite(buzzer,LOW);//mute
delay(2);//delay 2ms

}

}
while loops
Description

while loops will loop continuously, and infinitely, until the expression inside the parenthesis, ()
becomes false. Something must change the tested variable, or the while loop will never exit. This
could be in your code, such as an incremented variable, or an external condition, such as testing a

sensor.

Syntax
while(expression){
// statement(s)

Parameters
expression - a (boolean) C statement that evaluates to true or false

Example
var =0;
while(var < 200){
// do something repetitive 200 times

var++,

Chapter8 Tilt switch

What'’s Tilt Sensor?

The tilt sensor is a component that can detect the tilting of an object. However it is only the
equivalent to a pushbutton activated through a different physical mechanism. This type of sensor
is the environmental-friendly version of a mercury-switch. It contains a metallic ball inside that
will commute the two pins of the device from on to off and viceversa if the sensor reaches a

certain angle.

Tilt switch controls led lamp light & out
Experiment component:

Tilt sensor : 1

Breadboard & Jumper wires

Connect your circuit as the below diagram.
Tilt switch connect to analog pin.

)

o

um

(U K]

Vin

W

Powor

mz

M

AREF

o wir SainSmart 0o

s
e
(&
[re
m
1]

S0

GNI

—]

— L

AAA
vy

.
.

srrsssssrrsasenan

Example code

void setup()

;//set pin8 output

Mode(8,0UTPUT)

pin

}

void loop()

inti;//define i

while(1)

i=analogRead(5);//read voltage values of pin5
if(i>200)//if more than 512 (2.5V)

{
digitalWrite(8,HIGH);//light up led lamp

digitalWrite(8,LOW);//go out led lamp

Chapter9 Potentiometer

What’s Analog Pins?

1. A/D converter

The Atmegal68 contains an onboard 6 channel analog-to-digital (A/D) converter. The converter
has 10 bit resolution, returning integers from 0 to 1023. While the main function of the analog
pins for most Arduino users is to read analog sensors, the analog pins also have all the
functionality of general purpose input/output (GPIO) pins (the same as digital pins 0 - 13).
Consequently, if a user needs more general purpose input output pins, and all the analog pins
are not in use, the analog pins may be used for GPIO.

2. Pin mapping

The Arduino pin numbers corresponding to the analog pins are 14 through 19. Note that these
are Arduino pin numbers, and do not correspond to the physical pin numbers on the Atmegal68
chip. The analog pins can be used identically to the digital pins, so for example, to set analog pin
0 to an output, and to set it HIGH, the code would look like this:

pinMode(14, OUTPUT);

digitalWrite(14, HIGH);

3. Pullup resistors

The analog pins also have pullup resistors, which work identically to pullup resistors on the digital
pins. They are enabled by issuing a command such as

digitalWrite(14, HIGH); // set pullup on analog pin 0

while the pinis an input.

Be aware however that turning on a pullup will affect the value reported by analogRead() when
using some sensors if done inadvertently. Most users will want to use the pullup resistors only
when using an analog pin in its digital mode.

4. Details and Caveats

The analogRead command will not work correctly if a pin has been previously set to an output,
so if this is the case, set it back to an input before using analogRead. Similarly if the pin has been
set to HIGH as an output, the pullup resistor will be on, after setting it back to an INPUT with
pinMode.

The Atmegal68 datasheet also cautions against switching digital pins in close temporal proximity
to making A/D readings (analogRead) on other analog pins. This can cause electrical noise and
introduce jitter in the analog system. It may be desirable, after manipulating analog pins (in
digital mode), to add a short delay before using analogRead() to read other analog pins.

analogRead()

e Description
Reads the value from the specified analog pin. The Arduino board contains a 6 channel (8
channels on the Mini and Nano, 16 on the Mega), 10-bit analog to digital converter. This means
that it will map input voltages between 0 and 5 volts into integer values between 0 and 1023.
This yields a resolution between readings of: 5 volts / 1024 units or, .0049 volts (4.9 mV) per unit.
The input range and resolution can be changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum reading
rate is about 10,000 times a second.

e Syntax
analogRead(pin)

e Parameters
pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on the Mini
and Nano, 0 to 15 on the Mega)

e Returns
int (0 to 1023)

What'’s Potentiometer?

A potentiometer is a simple knob that provides a variable resistance, which we can read into the
Arduino board as an analog value. In this example, that value controls the rate at which an LED
blinks.

We connect three wires to the Arduino board. The first goes to ground from one of the outer
pins of the potentiometer. The second goes from 5 volts to the other outer pin of the
potentiometer. The third goes from analog input 2 to the middle pin of the potentiometer.

By turning the shaft of the potentiometer, we change the amount of resistence on either side of
the wiper which is connected to the center pin of the potentiometer. This changes the relative
"closeness" of that pin to 5 volts and ground, giving us a different analog input. When the shaft is
turned all the way in one direction, there are 0 volts going to the pin, and we read 0. When the
shaft is turned all the way in the other direction, there are 5 volts going to the pin and we read
1023. In between, analogRead() returns a number between 0 and 1023 that is proportional to

the amount of voltage being applied to the pin.

EEL EL FELL FEEL]

Example code:

int potpin=0; //define analog pin0
int ledpin = 13 ; //define analog pin13
intval=0; //setval isO.

void setup()

{
pinMode(ledpin,OUTPUT);//set analog pin13 output
Serial.begin(9600);//set baud rate 9600
}
void loop()
{
digitalWrite(ledpin,HIGH);//light up led in pin13
delay(50);//delay 0.05s
digitalWrite(ledpin,LOW);//go out led in pin13
delay(50);//delay 0.05s
val = analogRead(potpin);//give the value of pin0 to val
Serial.println(val) ; //print val’s value
}
B comi6 i~
Send
689
632
632
692
692
631
€91
692
B491
692
632
E93
692
91
6%
9600 baud >,

Chapter10 Photoresistor

What'’s photoresistor?

Photoresistor, also known as light pipes, common production materials is cadmium sulfide, There
are also selenium, aluminum sulfide, lead sulfide and bismuth sulfide material. these production
materials having characteristics in light of a specific wavelength, its resistance decreases rapidly.
This is due to the light generated carriers are involved in the electrical conductivity, under the
applied electric field drift motion, so that the photosensitive resistor rapid decline.

Experiment component
e Photoresistor : 1
e Buzzer:1
e 10Kresistor:1
e 220Qresistor: 1

e Breadboard & Jumper wires

Connect your circuit as the below diagram.

g Bl - Vil s s
DIGITAL

SainSmart

=4
L
M
o
3
a

www,sainsmart.com

POWER anaLoc 1N @

m
Mm5VG6ndVin 01 2 3 4 §

e o o o e o o o 0 @ e e o e o o o
e o 0 0o @ ® © 0 ¢ © 6 0 0 0 6 0 © 0 00 8 O O O 8 G O OO
e & @& @ 0 ® © ® ° ° O 9 % 0 ° ° O 0 O " O O " O O O O O
e o 0 0 w.oooooooi@‘-—u“—ocoo
e o o o 0 e o o 8 o8 0 0 0 0 8 @ e o 0o 5 0 0 o @
Example code:
int photocellPin = 2; //define photocellsh=2, read the value of voltage.
int ledPin = 12; //define ledPin12 is the output port of led’s level.
intval =0; //define original of val.
void setup() {
pinMode(ledPin, OUTPUT); //set ledPin output
1
void loop() {
val = analogRead(photocellPin); //get the value from sensor

if(val<=512)
//512=2.5V, if want the sensor be more sensitive, increase the number, or lese low the number.

digitalWrite(ledPin HIGH);//whenthe value Olval is lessthan 512(2.5V) light up led lamp
}

else{

digitalWrite(ledPin LON);

}

Chapter11 LM35 temperature
sensor

Temperature sensor

What’s temperature sensor?

The temperature sensor is that use substances of various physical properties with temperature
variation of the sensor and let the temperature converted to electricity. These regularly change
the physical properties of the main body temperature sensor is a core part of the temperature
measuring instruments, and a wide variety. In accordance with the measurement method is
divided into contact and non-contact two major categories, In accordance with the characteristics
of sensor materials and electronic components into the thermal resistance and thermocouple.
Used in this experiment is the LM35 temperature sensor.

Working principle
LM35 temperature sensor output voltage linear relationship between the Celsius temperature
scale, 0 °C, outputis OV, for every 1°Cincreases in output voltage of 10mV.

Vout_L!vBS (T) = lom\%C %d G

LM35 pin diagram is as follows

Plastic Package*

O TO-92

Plastic Package

LM
3507 +¥s Vour GND
= = B=
VOuT

Out can be seen from experimental cartridge of the temperature sensor, temperature sensor side
is flat, and the other side is semicircular. Flat face of our own, the leftmost VCC pin (connected to
+5 v), the middle of the GND pin VOUT (voltage value output pin, then the analog pins on the

board), and the rightmost pin (connected board GND). Three pins, respectively, then you can use.

Temperature alarm experiment

Experiment component
e LM35 temperature sensor module*1
e Breadboard & jumper wire few

Connection
First ready experimental board; Follow the LM35 temperature sensor connection connected to
VOUT is connected to an analog 0. Such temperature alarm experimental circuit connected.

Experimental principle

LM35 temperature sensor works shows that the temperature is increased by 1 ° C vout the
mouth output voltage increases 10MV.

According to this principle procedures in real time reading out the analog voltage value of 0, since
the analog port reads out a voltage value of 0 to 1023, i.e. OV corresponding 0,5 V corresponds to
1023.

Application, we only need to LM35 module, analog interface, the read analog value is converted
to the actual temperature.

Example code

int potPin = 0 ;//define pin0 connect with LM35
void setup()

Serial.begin(9600);
}
void loop()
{
int val;
int dat;

val = analogRead(potPin);

dat = (125*val)>>8 ; // Temperature calculation formula

Serial.print("Tep : ") ; //print “Tep” means temperature
Serial.print(dat) ; // print the value of dat
Serial.printIn("C"); //print “C” means degree
delay(500);//delay 0.5s

Program function

Download the program to the experimental board, open the monitor, you can see the current
ambient temperature. (In fact, the temperature value a little deviation, according to the ambient
temperature modify the program so that it is completely consistent with their own environment.)

B comie =TIy e

| Send

Tep: 30C
Tep:30C
Tep: 30C éf?
Tep: 30C
Tep: 30C
Tep: 30C
Tep:30C
Tep: 30C
Tep:30C
Tep:30C
Tep: 30C
Tep: 30C
Tep: 30C
Tep: 30C
Tap: 29C

9600 baud ~

Chapter12 Nixie tube

Experiment component

® digital tube x1
® 220 Q resistance x4
® Breadboard & jumper wire

Connect your circuit as the below diagram.

L L B B B B " sle ® @
® 8 8 9 8 0 8 8 8 80 " slle ® @
* 8 8 8 " 8 E 0P e " ol ® @
L B B O B . L B
% 8 9 " 0 e e e 0N L] L B

PR SEL

7 b
DIGITAL

SainSmart

wWww.sainsmart.com

m POWER ANALOG IN .
m5V6ndVin 0D 1 2 3 4 5

]

Example code

inta=7;
int b=6;
int c=5;
intd=11;
int e=10;
int f=8;
int g=9;
int dp=4;
//display number 1
void digital_1(void)
{
unsigned char j;
digitalWrite(c,LOW);// pin5 low, light up c
digitalWrite(b,LOW);//light up b
for(j=7;j<=11;j++)//go out else
digitalWrite(j,HIGH);
digitalWrite(dp,HIGH);//go out decimal point dp
}
//display number2
void digital_2(void)
{
unsigned char j;
digitalWrite(b,LOW);
digitalWrite(a,LOW);
for(j=9;j<=11;j++)
digitalWrite(j,LOW);
digitalWrite(dp,HIGH);
digitalWrite(c,HIGH);
digitalWrite(f,HIGH);
}
// display number3
void digital_3(void)
{
unsigned char j;
digitalWrite(g,LOW);
digitalWrite(d,LOW);
for(j=5;j<=7;j++)
digitalWrite(j,LOW);
digitalWrite(dp,HIGH);
digitalWrite(f,HIGH);
digitalWrite(e,HIGH);

// display number4

void digital_4(void)

{
digitalWrite(c,LOW);
digitalWrite(b,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,HIGH);
digitalWrite(a,HIGH);
digitalWrite(e,HIGH);
digitalWrite(d,HIGH);

}

// display number5

void digital_5(void)

{
unsigned char j;
for(j=7;j<=9;j++)
digitalWrite(j,LOW);
digitalWrite(c,LOW);
digitalWrite(d,LOW);
digitalWrite(dp,HIGH);
digitalWrite(b,HIGH);
digitalWrite(e,HIGH);

}

// display number6

void digital_6(void)

{
unsigned char j;
for(j=7;j<=11;j++)

digitalWrite(j,LOW);

digitalWrite(c,LOW);
digitalWrite(dp,HIGH);
digitalWrite(b,HIGH);

1

// display number7

void digital_7(void)

{

unsigned char j;
for(j=5;j<=7;j++)
digitalWrite(j,LOW);
digitalWrite(dp,HIGH);
for(j=8;j<=11;j++)
digitalWrite(j,HIGH);

// display number8
void digital_8(void)

{
unsigned char j;
for(j=5;j<=11;j++)
digitalWrite(j,LOW);
digitalWrite(dp,HIGH);
}
void setup()
{
inti;//define i
for(i=4;i<=11;i++)
pinMode(i,OUTPUT);//set pin4~pin11 output
}
void loop()
{
while(1)
{

digital_1();//number 1

delay(2000);//delay 2s

digital_2(); delay(2000);
digital_3(); delay(2000);
digital_4(); delay(2000);
digital_5(); delay(2000);
digital_6(); delay(2000);
digital_7(); delay(2000);
digital_8(); delay(2000);

Chapter13 4-bit Nixie tube

What'’s digital tube?

Digital tube is one kind semiconductor light emitting device. Their basic unit is light emitting
diode. Digital tube is divided into 7 segment digital tube and 8 digital tube by the number of
segments, 8 digital tube has one more light-emitting diode unit (a decimal point display) than 7
segment digital tube;

Digital tube has be divided into 1, 2, 4, and so on digital tube depend on how many “8” it can
show.

Digital tube is divided into common anode digital tube and common cathode digital tube by the
connection of the light-emitting diode unit. The common anode digital tube is that connect
light-emitting diode anode together to form a common anode (COM).Common anode digital tube
public pole COM to +5 V, should be applied in light-emitting diode cathode when a field is low,
the corresponding field lit. When a field of the cathode is high, the corresponding field is not
bright.

.
maG 2 I DIG 3

aaiaaAseasiaratiasaadiaRatAd

DI 4

GID4

i 7 4 2 1L 10 8

5643B

12 4
| 1.) 1 i, 2

Iiti. § s 4

'||I||'|:}I_||_|| Ir
$|k££i$kiil Aka iliiIILI11:#‘§#I++$:|i.liilﬁ$

D] E DIjA|B|C| Df I i G D 2D DG J\.‘Hl(:
l i] »

5643A

e
5]
2~

8
| Bia, | 1 DG, 2 DG, 3

[[iiiiiii;knii;;kiixililiii]
! BGRRY

DIGs, 4

]
|
Adki

Al B C| IJ:i F| GIDI|A| B|C| D| E| F| G|D2 I)ilm\lillni i h[lt\ D|EF um
— p— _t. .1..._.. - — 4._4._ = l_ 1_ N ¥ &_.L....l _l = ‘
1 :_‘;__’ - 5 ’ — - d e
i . l i
11. 94 2 :1.10.3-3
5643s
Working principle

Each segment of the digital tube is make up of the light emitting diode, and so when used with
the light emitting diode, it should connect with the current-limiting resistor as well, if not the
excessive current may burn light emitting diode.

The digital tube used in this experiment is a common anode common anode, The public pole
COM received +5 V when the common anode Digital tube be applied. The corresponding fields
are alight when a field emitting cathode of the diode is low, which are not bright when a field of
the cathode is high.

Connection

One end of the current limiting resistor plugged into the digital I / O pin is connected to the other
end of the not digitally tube field, the six remaining field and a decimal point followed by the
return Ways to access. If public COM is common anode received a +5 V, else received a GND.
There are a total 12 pin in one 4-bit digital tube.The decimal point downward when being placed
in front of, lower left corner has 1-bit. The other pins’ sequences are rotated counterclockwise.
Upper left corner is the largest 12th pin.

Digital tube display number

Experiment component
® 4-bit digital tube x1
® 220 Q resistance x4
® Breadboard & jumper wire

Connection

Driven digital tube current limiting resistor is certainly indispensable, there are 2 ways of limiting
resistor connection. The first one is connected with D1-d4 anode, totally connect four. This
connection method’s benefit is needs of relatively less resistance, but generates different the
digital brightness. The brightest is 1, 8 is the darkest. Another connection is use the other eight
pins. The digital brightness of this method will be more like, but need more resistance. The
experiments use eight 220Q resistances.

Refer to figure below wiring for the 5643A

1
1
=
E
a

Refer to figure below wiring for the 5643S

L B L - — . — - L

. & 8 & 8
. 8 8 8 @
. 8 8 8 8
‘e & 8 8 0

. 8
- 8
. e
. 8

. e

.

L

e & &

. & 8 8 8
- e 8 8 @
. 8 8 8 0
. & 8 8 8
. & 8 & 0
. e 8 80

-
.
L]
.

Example code
This is a simple stopwatch. Its accuracy is not very high. You need to fine-tune the parameters.

CHCR .

L A

//set anode interface
inta=1;
int b =2;
int c =3;
intd=4;

inte =5;
int f =
intg=7;

I
&

intp=38§;

//set cathode interface
intd4 =9;

int d3 =10;

intd2 =11;
intdl=12;

// Set variables

long n=0;

int x = 100;

int del =55; // This number is fine-tuning of the clock

void setup()

{
pinMode(d1, OUTPUT);
pinMode(d2, OUTPUT);
pinMode(d3, OUTPUT);
pinMode(d4, OUTPUT);
pinMode(a, OUTPUT);
pinMode(b, OUTPUT);
pinMode(c, OUTPUT);
pinMode(d, OUTPUT);
pinMode(e, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(p, OUTPUT);

void loop()
{
clearLEDs(); pickDigit(1);
pickNumber((n/x/1000)%10);
delayMicroseconds(del);

clearLEDs(); pickDigit(2);
pickNumber((n/x/100)%10);
delayMicroseconds(del);

clearLEDs();
pickDigit(3);
dispDec(3);

pickNumber((n/x/10)%10);
delayMicroseconds(del);

clearLEDs(); pickDigit(4);
pickNumber(n/x%10);
delayMicroseconds(del);

n++;
if (digitalRead(13) == LOW)

{
n=0;
}

void pickDigit(int x) //defing pickDigit(x), its role is turn on the dx port
{
digitalWrite(d1, HIGH);
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);

switch(x)
{
case 1:
digitalWrite(d1, LOW);
break;
case 2:
digitalWrite(d2, LOW);
break;
case 3:
digitalWrite(d3, LOW);
break;

default:
digitalWrite(d4, LOW);
break;

}

void pickNumber(intx) //define pickNumber(x), Its role is to show digital x

{

switch(x)

{

default:
zero();
break;
case 1:
one();
break;
case 2:
two();
break;
case 3:
three();
break;
case 4:
four();
break;
case 5:
five();
break;
case 6:
six();
break;
case 7:
seven();
break;
case 8:
eight();
break;
case 9:
nine();
break;

}

void dispDec(int x) // Set to open the decimal point

{
digitalWrite(p, LOW);

void clearLEDs() //clear the screen
{
digitalWrite(a, LOW);
digitalWrite(b, LOW);
digitalWrite(c, LOW);
digitalWrite(d, LOW);

digitalWrite(e, LOW);
digitalWrite(f, LOW);
digitalWrite(g, LOW);
digitalWrite(p, LOW);

void zero() // Define the number 0 cathode pin switch

{
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);

digitalWrite(f, HIGH);
digitalWrite(g, LOW);

void one()

{
digitalWrite(a, LOW);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, LOW);
digitalWrite(e, LOW);
digitalWrite(f, LOW);
digitalWrite(g, LOW);

void two()

{
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, LOW);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);
digitalWrite(f, LOW);
digitalWrite(g, HIGH);

void three()
{
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);

digitalWrite(d, HIGH);
digitalWrite(e, LOW);
digitalWrite(f, LOW);

digitalWrite(g, HIGH);

void four()

{
digitalWrite(a,
digitalWrite(b,
digitalWrite(c,
digitalWrite(d,
digitalWrite(e,
digitalWrite(f,

LOW);
HIGH);
HIGH);
LOW);
LOW);
HIGH);

digitalWrite(g, HIGH);

void five()
{
digitalWrite(a,
digitalWrite(b,
digitalWrite(c,
digitalWrite(d,
digitalWrite(e,
digitalWrite(f,

HIGH);
LOW);
HIGH);
HIGH);
LOW);
HIGH);

digitalWrite(g, HIGH);

void six()
{
digitalWrite(a,
digitalWrite(b,
digitalWrite(c,
digitalWrite(d,
digitalWrite(e,
digitalWrite(f,

HIGH);
LOW);
HIGH);
HIGH);
HIGH);
HIGH);

digitalWrite(g, HIGH);

void seven()

{

digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);

digitalWrite(d, LOW);
digitalWrite(e, LOW);
digitalWrite(f, LOW);
digitalWrite(g, LOW);

void eight()

{
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);

digitalWrite(f, HIGH);
digitalWrite(g, HIGH);

void nine()

{
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, LOW);
digitalWrite(f, HIGH);
digitalWrite(g, HIGH);

}

In front of setup () defined range of digital display routines, the definition of these subroutines
can be easy to use in the loop (), just write the name of the subroutine and it will.

Program function

Chapter14 74HC595

What’s 74HC595?

74HC595 with 8-bit register and a memory, and has three-state output function. we use it to
control 8 LED lights. Why do we choose 74HC595? If we control eight small lights just with
Arduino, how many its | / O will be occupied? The answer is eight. However one arduino uno only
have 20 I/0 port. 8 small lights have take up too many resources. The purpose we use 74HC595 is
to reduce the occupation of the number of I / O port. With 74HC595 chip, we can use the 3
digital | / O port to control 8 LED lights. Why not?

Prepare experimental components below.

i

Connect the circuit diagram according the schematic diagram.

Wi Yir
S
— ST | ——
—e i & ma2 —
SainSmart o p—
0O fp—
0 TAHES
(TR -
= ==l LD aND 306
_ o = 6 8 /E['t, 3300
- b JeEs] | OF Lt @ 7 E *&Dﬂ 3300
— i E S s Popt 9 [3 7 Wy
- u " 1S 0 =
= a B y 4 ils]
- a7 £ T - pe— LEDS
g er| 20 vo ¥ 2 445
— A = 12— E0d £
- > v1| SO E 3305
— A1)] — {E[ﬂi
" 0D 4o} N1
— 00— ST {4 { Z 3300
571 A N o -
GAD 4501 3300
)| COCOHVL

This schematic seems are complex, after analysis and combined with reference we will find it
very simple.

L L L - L L

L L L L - L L L L
L R) — — LR ..
LA B B L - - S eveeET L I B L
L I rees SRR R .
L L L L L - B - s 5.2 0 B R R R R Ll
LU R B A . . 8:BiBikik; L L . DR B BN L
- w-- LA ..
L - — - - - - L L B L L
. E R ..
e ———— - C) ..
L = B B R ..

- L L

L L

» WWW.sainsmart. com

ANALRE TIm

BLiE1}

Example code

const int ON = HIGH ;
const int OFF = LOW ;

int latchPin = 5; //connect 595’ pin 12
int clockPin = 4; //connect 595 ’s pin11
int dataPin = 2; // connect 595 ’s pin 14

// connect 595’s pin 16 with 5VDC
// connect 595’s pin 8 with GND

int ledState = 0;

void setup() {
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);
}
void loop() {
int delayTime = 100 ;
for(int i=0;i<256;i++)
{
updateLEDs(i);
delay(delayTime);

}
}
void updateLEDs(int value)
{

digitalWrite(latchPin,LOW);
shiftOut(dataPin, clockPin, MSBFIRST, value);
digitalWrite(latchPin,HIGH);

void updateLEDsLong(int value)
{
digitalWrite(latchPin,LOW);
for(int i=0;i<8;i++)
{
int bit = value&B10000000;
value = value<<1;
if(bit==128)
{
digitalWrite(dataPin,HIGH);
}

else

{

digitalWrite(dataPin,LOW);
}
digitalWrite(clockPin,HIGH);
delay(1);
digitalWrite(clockPin,LOW);

}
digitalWrite(latchPin,HIGH);

int bits[] = {B00000001,B00000010,800000100,800001000,800010000,800100000,
B01000000,B810000000};
int masks[] ={B11111110,811111101,811111011,811110111,811101111,B11011111,
B10111111,B01111111};
void changeLED(int led,int state)
{
ledState = ledState & masks[led];
if(state == ON){ ledState = ledState | bits[led]; }
updateLEDs(ledState);

}

Downloaded the program into the control panel, we can see the wonderful scene of small
lights flashing.

In the connection circuit process, we should pay attention to the clear relay pin position. What'’s
more, the IN4001 diodes are divided into positive and negative. Do not look at the relay circuit is
slightly complex, but the kiev program is very simple. The relay is digital signal module. By
opening and closing of the relay to the transistor digital signal to control high-power devices. We
use LED lights as a high-power devices here.

In program, we use digital port 8 to output high and delay for one second, one second output low,
like the switch off for one second and then turned on one second.

Code

int relayPin = 8 ;// define digital port 8, connected to the transistor base
void setup()

{
pinMode(relayPin,OUTPUT);// define relayPin port to be output mode
}
void loop()
{

digitalWrite(relayPin,HIGH);// drive relay closes conduction
delay(1000);//delay one second
digitalWrite(relayPin,LOW);//drive relay off
delay(1000);//delay one second

Result
We will see small red lights and green lights flashing take turns. This is the end of this chapter’s
experiment, we hope that you could enjoy it and create more interactive works.

® 9 ®© 0 ® @ ® ©¢

COL.
PIN.

w

Chapter15 8x8 matrix LEDs

The following figure is a matrix LED internal schematic:

® @ 0 ®06 6 06
11 15 16

13

10

6

[RI] [kb R T e

s
s 3 R
i N i
B i M o iV i

N P P P R

N R i Y Y P
B et W i ol e i B

Wiring diagram:

16

w3, %
{1} o
3 i !
O0000000
ofeleialeleloln
sleislelelalale
0000000
Kis By ~ N~
IR HOEGIDAD NG
SISHSNOEOTHYS [
S4inSmart uno 00000000
O0O0Q000O00
ITIXL)
—{
{1}
K}
{E}

One LED of LED 8X8 matrix is lit as follows :

coLl 2 3456 7 SROW
Q@OO0O00O00QO !
Q00000002
QO0OO0O0Q03
elojelolelolelor
QOOO00O00OO0S5
elojolelelolele)
QOO0 0OO000O7
Q00000008
Sample code:

//the pin to control ROW

const int rowl = 2; // the number of the row pin 9
const int row2 = 3; // the number of the row pin 14
const int row3 = 4; // the number of the row pin 8
const int row4 = 5; // the number of the row pin 12
const int row5 = 17; // the number of the row pin 1
const int row6 = 16; // the number of the row pin 7
const int row7 = 15; // the number of the row pin 2
const int row8 = 14; // the number of the row pin 5
//the pin to control COI

const int coll = 6; // the number of the col pin 13
const int col2 = 7; // the number of the col pin 3
const int col3 = 8; // the number of the col pin 4
const int col4 = 9; // the number of the col pin 10
const int col5 = 10; // the number of the col pin 6
const int col6 = 11; // the number of the col pin 11
const int col7 = 12; // the number of the col pin 15
const int col8 = 13; // the number of the col pin 16

void setup(){

inti=0;
for(i=2;i<18;i++)

{

pinMode(i, OUTPUT);

1
pinMode(row5, OUTPUT);
pinMode(row6, OUTPUT);
pinMode(row7, OUTPUT);
pinMode(row8, OUTPUT);

for(i=2;i<18;i++) {
digitalWrite(i, LOW);
1
digitalWrite(rows5,
digitalWrite(rows,
digitalWrite(row?,
digitalWrite(rows,
1
void loop(){
inti;

LOW);

LOW);

LOW);
LOW);

//the row # 1 and col # 1 of the LEDs turn on

digitalWrite(row1,
digitalWrite(row2,
digitalWrite(rows3,
digitalWrite(row4,
digitalWrite(rows5,
digitalWrite(rows,
digitalWrite(row?7,
digitalWrite(rows,

digitalWrite(col1,
digitalWrite(col2,
digitalWrite(col3,
digitalWrite(col4,
digitalWrite(col5,
digitalWrite(col6,
digitalWrite(col7,

HIGH);
LOW);
LOW);
LOW);
LOW);
LOW);
LOW);

LOW);

LOW);
HIGH);
HIGH);
HIGH);
HIGH);
HIGH);
HIGH);

digitalWrite(col8, HIGH);

delay(1000);

//turn off all
for(i=2;i<18;i++) {

digitalWrite(i, LOW);

}

delay(1000);
}

The experiment’s code are as follows:

By dynamic scanning, it shows letter A in the positionl of the LED matrix.

#define data_ascii_A 0x02, 0x0C, 0x18, 0x68, 0x68, 0x18, 0x0C, 0x02 /+ A

/%A

& '_‘ . Set the value to 1, then the Led will
1 /015 petumon!

The code in the folder - "8x8 the matrix LEDs experimental", can be used as a reference, made
more exciting experiments.

Chapter16 Infrared remote
control

Infrared receiving head

What’s Infrared receiving head?

Infrared remote control signals sent a series of binary pulse code. In order to make it from other
infrared signal interference during wireless transmission, typically modulated it on a particular
carrier frequency, and then emitted it by the infrared-emitting diode. The infrared receiving
apparatus will have to filter out other clutter, only the specific frequency of the signal and
restoring it into a binary pulse code. That is demodulated.

How it work?

Built-in receiver tube infrared emission tube emitted light signal is converted to a weak signal.
This signal via the IC internal amplifier amplifies. Then through automatic gain control, band pass
filtering, demodulation, and waveform-shaped to restore the original encoding of the remote
control transmitter, coded identification on the electrical input to circuit via a received signal

output pin head.

How to connect?

Infrared receiving head has three pin:
VOUT connected to the analog port.
GND received experimental board’s GND.

VCC received experimental board's +5 v.

VOUT | VcC

Infrared remote control experiment

Experiment component

IR remote control x1
Infrared receiving head x1
Buzzer x1

220 Q resistance x1

vk W

Breadboard & jumper wires

Experiment principle
If you want to decode remote control, you must understand the coding system of the remote
controller first. The coding system of the remote control we used is NEC protocol. Now let’s learn
about NEC protocol:
® NEC protocol introduction:

Feature:

(1) 8-bit address spaces, 8-bit command spaces.

(2) address bits and command bits are transmitted twice for reliability.

(3) Pulse position modulation.

(4) Carrier frequency 38khz.

(5) Every bit’s time is 1.125ms or 2.25ms.

L 4

- Logical "1" -4——ogical "0"—»
#5605 +560us» -+ 560us
<« 2.25ms > 1.12ms —»
Protocol:
LSB MSBLSE 'MSBLSB MSBILSE MSB
E«l—EIms—lr «4.5me 4—ﬁlddress—h-:i—Address—b:ﬁtommahd—h:i—tommand—b

The above picture shows the typical NEC protocol pulse sequence. Note: This is the prior sending
the LSB (least significant bit) agreement.

Pulse propagation’s address is the 0x59 command 0x16 at the above. A message is start from a
9ms high level, followed by a 4.5ms low level (these two level made boot code) and then by the
address code and command code.

Address and command transfer twice. The second time all bits are inverted, can be used for use

in the received message recognized. The total transmission time is constant, because the
duplication of every point of its length negated. If you're not interested, you can ignore this

reliability negated address and command can also expand to 16!

- 110 ms > 110 ms > 110 ms > 110 ms .
ff
Cormmand Repeat Repeat Repeat Repeat

2.25ms

According to the characteristics and the receiving end of the waveform of the NEC coding, this
experiment will divided receiving end’s wave form into four parts: Primer searching code (9ms
And 4.5ms pulse), the address code 16 (including an 8-bit address and 8-bit address is negated),
the command code 16 (package

Including eight command-bit and 8-bit command negated), repeat code (9ms, 2.25ms, 560us
pulse). HIGH segment of the received waveform and low section to be measured using the timer,
based on the measured time to distinguish: a logical "0", a logical "1", cited seek pulse, repetitive
pulses. Boot code and address code as long as the judge is correct pulse can be, without storage,
but the command code must be stored, because each key command codes are different.

Connect your circuit as the below diagram.

Te digital Pin 8

10K R

Example code

#define IR_IN 8 // infrared receive

int Pulse_Width = 0;//storage pulse width

int ir_code = 0x00;// user code value

char adrL_code = 0x00;//Command code

char adrH_code = 0x00;// Command code base minus one's complement

void timer1_init(void)//timer initialization function

{

}

TCCR1A = 0X00;

TCCR1B = 0X05;//set timer clock source

TCCR1C = 0X00;

TCNT1 = 0X00;

TIMSK1 = 0X00; // Ban timer interrupt overflow

void remote_deal(void)// Implement the decoding function

{

}

// data presentation Serial.printin(ir_code,HEX);//16
Into system show Serial.printin(adrL_code,HEX);//16
Into system show

char logic_value()//Judgment logic value "0" and "1" son function

{

}

TCNT1 = 0X00;
while(!(digitalRead(IR_IN))); //if low wait
Pulse_ Width=TCNT1;
TCNT1=0;
if(Pulse_Width>=7&&Pulse_Width<=10)//low level 560us
{
while(digitalRead(IR_IN));//if high wait
Pulse_Width=TCNT1;
TCNT1=0;
if(Pulse_Width>=7&&Pulse_Width<=10)//high level 560us
return 0;
else if(Pulse_Width>=25&&Pulse_Width<=27) //high level 1.7ms
return 1;

}

return -1;

void pulse_deal()//Receiving address code and command code pulse function

{

inti;
int j;

ir_code=0x00;// clear
adrL_code=0x00;// clear
adrH_code=0x00;// clear

// Analysis of the remote control code user code value
for(i=0;i<16;i++)
{
if(logic_value()==1) //if 1
ir_code |= (1<<i);//Save key value

}
// Analytical remote control code commands in the code
for(i=0;i<8;i++)
{
if(logic_value() == 1) //if 1

adrL_code | = (1<<i);//save key value
}
// Analysis of the remote control code user code value
for(j=0;j<8;j++)
{
if(logic_value() == 1) //if 1

adrH_code |= (1<<j);//save key value

}
}
void remote_decode(void)// Decoding function
{

TCNT1=0X00;
while(digitalRead(IR_IN))// if high wait
{
if(TCNT1>=1563) // When high level lasted for more than 100 ms, shows that at the
moment no key press
{
ir_code=0x00ff;// user code value
adrL_code=0x00;// a byte value before Key code
adrH_code=0x00;// a byte value after Key code

return;

// If high level can’t last for more than 100 ms
TCNT1=0X00;
while(!(digitalRead(IR_IN))); //if low wait
Pulse_Width=TCNT1;
TCNT1=0;
if(Pulse_Width>=140&&Pulse_Width<=141)// 9ms

while(digitalRead(IR_IN));//if high wait
Pulse_Width=TCNT1; TCNT1=0;
if(Pulse_Width>=68&&Pulse_Width<=72)// 4.5ms

{
pulse_deal();
return;
}
else if(Pulse_Width>=34&&Pulse_Width<=36)//2.25ms
{

while(!(digitalRead(IR_IN)));// if low wait
Pulse_Width=TCNT1;

TCNT1=0;
if(Pulse_Width>=7&&Pulse_Width<=10)// 560us
{
return;
}
}
}
}
void setup()
{

Serial.begin(9600);
pinMode(IR_IN,INPUT);// Set infrared receiving pin for input
Serial.flush();
1
void loop()
{
timer1_init();//Timer initialization
while(1)
{
remote_decode(); // decode

remote_deal(); // Executive decoding results

}

Chapter17 1602LCD

What’s 1602LCD?

Nowadays 1602LCD is application of very wide range. The initial 1602 LCD used HD44780
controller. But now various manufacturers basically adopt compatible IC with their 1602 module.
Their characteristics are basically the same.

©

1602LCD
Display capacity: 16x2 characters;

Chip operating voltage: 4.5V~5.5V;
Operating current: 2.0mA(5.0V);

Best operating voltage: 5.0V;
Character size: 2.95x4.35(WxH) mm.

Interface pin definition

number symbol states number symbol states

1 VSS GND 9 D2 Date I/O

2 VDD VCC 10 D3 Date I/O

3 VL VO 11 D4 Date I/O

4 RS (V/L) 12 D5 Date I/O

5 R/W Read/write(H/L) | 13 D6 Date I/O

6 E enable 14 D7 Date I/O

7 DO Date I/O 15 BLA Backlight
anode

8 D1 Date I/O 16 BLK Backlight
cathode

1. Two sets of power supply, a set of modules, the other one is the power of the backlight,
generally using the 5V power supply.

2. VLis used to adjust the contrast. It connected in series the potentiometer is not greater than
a 5KQ. This experimental used one 1KQ of resistor to set contrast. There are high potential
connection and low potential connection. It connected in series 1KQ resistance then
connected to GND.

Basic Operation

Read status Input RS=L, R/W=H, E=H Output DO~D7=status word
Write command Input RS=L, R/W-=L, Output none
DO~D7=command code, E=
high pulse
Read data Input RS=H, R/W=H, E=H Output DO~D7=data
Write data Input RS=H, R/W=L, DO~D7=data, | Output none
E= high pulse

output of the sketch on a 2x16 LCD

The LCDs have a parallel interface, meaning that the microcontroller has to manipulate several
interface pins at once to control the display. The interface consists of the following pins:

A register select (RS) pin that controls where in the LCD's memory you're writing data to. You can
select either the data register, which holds what goes on the screen, or an instruction register,
which is where the LCD's controller looks for instructions on what to do next.

A Read/Write (R/W) pin that selects reading mode or writing mode

An Enable pin that enables writing to the registers

8 data pins (DO -D7). The states of these pins (high or low) are the bits that you're writing to a
register when you write, or the values you're reading when you read.

There's also a display constrast pin (Vo), power supply pins (+5V and Gnd) and LED Backlight (Bklt+
and BKIt-) pins that you can use to power the LCD, control the display contrast, and turn on and off
the LED backlight, respectively.

The process of controlling the display involves putting the data that form the image of what you
want to display into the data registers, then putting instructions in the instruction register. The
LiquidCrystal Library simplifies this for you so you don't need to know the low-level instructions.
The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit mode
requires seven 1/0 pins from the Arduino, while the 8-bit mode requires 11 pins. For displaying
text on the screen, you can do most everything in 4-bit mode, so example shows how to control a
2x16 LCD in 4-bit mode.

Circuit
To wire your LCD screen to your Arduino, connect the following pins:
LCD RS pin to digital pin 12
LCD Enable pin to digital pin 11
LCD D4 pin to digital pin 5
LCD D5 pin to digital pin 4
LCD D6 pin to digital pin 3
LCD D7 pin to digital pin 2

@ Izﬁ‘w.samsm

Additionalifire a 10K pot to +SVand GND > with it'swiper (output)to LCD screensVO pin
(pin3)

&
3V3 5V Vin
Power
wd RST D13 }—
4 AREF D12 ——l
. D11 M
SainSmart
D10 PWM
pe |
L H
5 D8 |j—
g
< 2 D7 [
5 D6 hPwm
10K potentiometer g G
oo
— AQ = D5
— Al D4
>
—_— A2 2 p3 oM
S
— A3 -§ D2
] a S D1 |t
— A5 Do =2
GND

Vss

Vec

Vo

RS

R/W

DBO

DB1

DB2

DB3

DB4

DB5

DB6

DB7

LED+

LED-

ani

Example code

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
// set up the LCD's number of columns and rows:
Icd.begin(16, 2);
// Print a message to the LCD.
Icd.print("hello, world!");

void loop() {
// set the cursor to column 0, line 1
// (note: line 1 is the second row, since counting begins with 0):
Icd.setCursor(0, 1);
// print the number of seconds since reset:
Icd.print(millis()/1000);

®

Chapter18 Relay module

What'’s relay?

It will be able to control various appliances, and other equipments with large current. It can be
controlled directly by Micro-controller (Arduino , 8051, AVR, PIC, DSP, ARM, ARM, MSP430, TTL
logic) .

This project will use 5V 2-Channel Relay interface board.

'/‘ . _Osomu'
€A . NP

10K 250UAC 10A 125VAC ;
10A JOVDC 10A 28VDC 5

SRD- USVDC-SL C

Product features:
® 5V 2-Channel Relay interface board, and each one needs 15-20mA Driver Current
® Equiped with high-current relay, AC250V 10A ; DC30V 10A
@® Standard interface that can be controlled directly by microcontroller (Arduino , 8051,
AVR, PIC, DSP, ARM, ARM, MSP430, TTL logic)
® Indication LED’s for Relay output status

Experiment component
e Relay:1
e LED:1
e 10Kresistor:1
e 220Qresistor: 1
e Breadboard & Jumper wires
e USBcable: 1

Connect your circuit as the below diagram.

4 =5V,

Pinl3¢— 1
14- 34.:
SainSmart«~ Relay
24 44
=1 i
l GND+
—— GND-

Example

int jdgPin=13;

void setup()

{
pinMode(jdgPin,OUTPUT);
Serial.begin(9600);

}

void loop()

{ digitalWrite(jdqPin,HIGH);

delay(1000);

digitalWrite(jdqPin,LOW);
delay(1000);

}

Here | introduce how to use multimeter test relay pin.

General relay has housing mark. If not, is also very simple test with a multimeter:
e 5V power supply

e Multimeter

1. Find the coil pins
Use multimeter to measure the resistance between the pins. The value of which 2 feet is in
hundreds to 1 k ohm resistance are coil pins. Note some of the relay coils are positive and
negative, the reverse may not damage, but no action.

2. Find the NO (normally open) contact, NC (normally closed) contact.
Use multimeter measuring four pins, which two pins breakover are NC contact, coil with 5v
direct current, the relay action, they should be disconnected; If there is no disconnect, the
internal relations is short sub.
Add 5v direct current to coils, make the relay action, this time test with a multimeter, if that
two pins which disconnect before but connect this time, they are NO contact.
The pins which have something to do with NO contact, and have something to do with NC

contact, is common port.

®

Chapter19 Distance sensor

Product features:
Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact measurement function,
the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters, receiver
and control circuit. The basic principle of work:
® Using 10 trigger for at least 10us high level signal,
® The Module automatically sends eight 40 kHz and detect whether there is a pulse signal
back.
® |F the signal back, through high level , time of high output IO duration is the time from
sending ultrasonic to returning. Test distance = (high level timexvelocity of sound
(340M/S) 2

Wire connecting direct as following:
® 5V Supply

® Trigger Pulse Input

® Echo Pulse Output

® (V Ground

If you are sourcing a ultrasonic ranging module , the HC-SR04 is good choose . Its stable
performance and high ranging accuracy make it a popular module in electronic market .
Compared to the Shap IR ranging module , HC-SR04 is more inexpensive than it . But it has the
same ranging accuracy and longer ranging distance.

Specifications:

® power supply :5V DC
® quiescent current : <2mA

® effectual angle: <15°

® ranging distance : 2cm — 500 cm
® resolution: 0.3 cm

There are 4 pins out of the module : VCC , Trig, Echo, GND . So it's a very easy interface for
controller to use it ranging. The all process is : pull the Trig pin to high level for more than 10us
impulse , the module start ranging ; finish ranging , If you find an object in front , Echo pin will be
high level , and based on the different distance,it will take the different duration of high level. So

we can calculated the distance easily :
Distance = ((Duration of high level)*(Sonic :340m/s))/2

finally , look at the back of the module .All of the chip in the module have been burnish , maybe
the author want to prevent the designed from plagiarism. But ultrasonic ranging module is nearly
the same principle, so it's not hard to speculated that the role of the chip — I'm sure at least one
74series chip on it ;) . It is not a difficult task to crack it , but ... it's at so low a price , even

cheaper than your copy.

Connect your circuit as the below diagram.

®

Sl amsmart.com
m WER ANALOG IN
m5VGnd9Y D 12 3 45

L
L)
[
o

Example code

const int TrigPin = 2;

const int EchoPin = 3;

float cm;

void setup()
{ Serial.begin(9600);
pinMode(TrigPin, OUTPUT);
pinMode(EchoPin, INPUT);
}

void loop()

{
digitalWrite(TrigPin, LOW); //Low-high-low level sent a short time pulse to TrigPin

delayMicroseconds(2);
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);

cm = pulseln(EchoPin, HIGH) / 58.0; //Echo time converted into cm
cm = (int(cm * 100.0)) / 100.0; // retain two decimal places
Serial.print(cm);

Serial.print("cm");

Serial.printIn();

delay(1000);

}

46.€7cm
29. 58cm
19. 22cm
31. 60ca
5. T4cm
36. 03¢cm
3.27cm
}4. 98ca
6. O6em
9. 00cm
14. 22cm
38. SS5ea

«|

B, 1ine anding =] [0600 beua

Chapter20 Servo Motor

Controlling a servo motor with an Arduino or other type of microcontroller is probably the easiest
way to get started in robotics, motion art, or any other reason you may have to make your
electronic project interact with the real world. Servos are very simple to interact with and in this
post I'll show you how to connect one to an Arduino.

Servo motors are a specific type of motor, often used in hobby RC cars and planes, that rotate to a
specific angle when a corresponding signal is applied to the pulse pin. Servo motors are very easy
to program and very strong for their size. This makes them useful for a wide array of applications.
The internal components of a servo motor consist of a regular DC motor, which does the actual
work, a system of gears to increase the torque to the output shaft, and a circuit board and sensors
to control the movement of the motor.

Wiring:

To get started controlling a servo with your Arduino, you only need to connect three pins. There
are two pins for power and ground. For a small servo or just for testing, you can connect these
directly to the Arduino. If you are controlling a large servo motor, you might want to use an
external power source. Just remember to connect the ground from the external source to the
ground of the Arduino.

www. sainsmart. com

POMER ANALOG IN .
5V6ndVin D1 2 3 4 5

m
>
m

Pulse

Vce

The third pin is the pulse, or signal pin. This accepts the signal from your controller that tells it
what angle to turn to. The control signal is fairly simple compared to that of a stepper motor. It is
just a pulse of varying lengths. The length of the pulse corresponds to the angle the motor turns
to. Typically a pulse of 1.25 milliseconds causes the motor to rotate to 0 degrees and a pulse of
1.75 milliseconds turns it 180 degrees. Any length of pulse in between will rotate the servo shaft

&

to its corresponding angle. Some servos will turn more or less than 180 degrees, so you may
need to experiment.

Programming:

The Arduino software comes with a sample servo sketch and servo library that will get you up and
running quickly. Simply load it from the menu as shown below. Their example uses pin 9 for the
pulse wire, so to keep it simple, that’s what | used. You could use any of the data pins and, if you
add more than one servo, you will need to. The Sweep sample simply rotates the servo back and
forth from O degrees to 180. There is another sample sketch that uses a potentiometer as an
input to control the angle of the motor, but I'll get in to that later.

o0 - 2 -
Edit Sketch Tools Help
New Ctrl+N
Open... Ctrl+O
Sketchbook »
Examples » 01.Basics »
Close Ctrl+W 02.Digital »
Save Ctrl+S 03.Analog »
Save As... Ctrl+Shift+S 04.Communication »
Upload Ctrl+U 05.Control »
Upload Using Programmer Ctrl+Shift+U 06.Sensors »
Page Setup Ctrl+Shift+P 07.Dis'play ’
Print Ctrl+P s '
09.UsB 4
Preferences Ctrl+Comma 10.StarterKit 3
Quit Ctrl+Q ArduinolISP
EEPROM »
Esplora »
Ethernet »
Firmata »
LiquidCrystal »
LiquidCrystal_I2C »
SD »
Servo » Knob
SoftwareSerial » Sweep
SPI »
- Stepper »

Wire

The code is pretty basic and well documented. It first loads the library needed and sets up which

)

pin to use as the output.

This line tells it to move from 0 degrees to 180 degrees one degree at a time:
for(pos = 0; pos < 180; pos += 1)

And this line tells it to move back to 0 degrees one degree at a time.

for(pos = 180; pos>=1; pos-=1)

Chapter21 XBee shield

What’s XBee shield?

The Arduino XBee shield (an Expansion Board without XBee module) is a compliant solution
designed to meet low-cost, low-power wireless sensor networks with special needs. The module
is easy to use, low power consumption, and the provision of critical data between devices reliable
transmission. As the innovative design, XBee-PRO can be in the range 2-3 times beyond the
standard ZigBee modules. XBee-PRO modules work in the ISM 2.4 GHz frequency band. The
MaxStream's XBee (1 mW) Zigbee module is pin-compatible.

The Xbee module is widely used in the United States, Canada, Australia, Israel and Europe. The
establishment of RF communication does not require any configuration and the module's default
configuration supports a wide range of data system applications. You can also use a simple AT
command to advanced configuration. An OEM developer is now XBee code development package.
It is self-developed in collaboration with the MaxStream ZigBee/802.15.4 RF module code.

Example
You should be able to get two SainSmart boards with XBee shields talking to each other without

any configuration, using just the standard SainSmart serial commands.

To upload a sketch to an SainSmart board with a XBee shield, you'll need to put both jumpers on
the shield to the "USB" setting (i.e. place them on the two pins closest to the edge of the board)
or remove them completely (but be sure not to lose them!). Then, you can upload a sketch
normally from the SainSmart environment. In this case, upload the Communication | Physical
Pixel sketch to one of the boards. This sketch instructs the board to turn on the LED attached to
pin 13 whenever it receives an 'H' over its serial connection, and turn the LED off when it gets an
'L'. You can test it by connecting to the board with the SainSmart serial monitor (be sure it's set at
9600 baud), typing an H, and pressing enter (or clicking send). The LED should turn on. Send an L
and the LED should turn off. If nothing happens, you may have an SainSmart board that doesn't
have a built-in LED on pin 13.

Once you've uploaded the Physical Pixel sketch and made sure that it's working, unplug the first
SainSmart board from the computer. Switch the jumpers to the XBee setting (i.e. place each on
the center pin and the pin farthest from the edge of the board). Now, you need to upload a
sketch to the other board. Make sure its jumpers are in the USB setting. Then upload the
following sketch to the board:

void setup()
{ Serial.begin(9600);
}

void loop()

{ Serial.print('H");

delay(1000);

Serial.print('L");

delay(1000);

}
When it's finished uploading, you can check that it's working with the SainSmart serial monitor.
You should see H's and L's arriving one a second. Turn off the serial monitor and unplug the board.

Switch the jumpers to the XBee setting. Now connect both boards to the computer. After a few
seconds, you should see the LED on the first board turn on and off, once a second. (This is the
LED on the SainSmart board itself, not the one on the XBee shield, which conveys information
about the state of the XBee module.) If so, congratulations, your SainSmart boards are
communicating wirelessly. This may not seem that exciting when both boards are connected to
the same computer, but if you connect them to different computers (or power them with an
external power supply - being sure to switch the power jumper on the SainSmart board), they
should still be able to communicate.

Addressing

There are multiple parameters that need to be configured correctly for two modules to talk to
each other (although with the default settings, all modules should be able to talk to each other).
They need to be on the same network, as set by the ID parameter (see "Configuration" below for
more details on the parameters). The modules need to be on the same channel, as set by the CH
parameter. Finally, a module's destination address (DH and DL parameters) determine which

modules on its network and channel will receive the data it transmits. This can happen in a few

ways:

e Ifamodule's DHis 0 and its DL is less than OxFFFF (i.e. 16 bits), data transmitted by that
module will be received by any module whose 16-bit address MY parameter equals DL.

e If DHis 0 and DL equals OxFFFF, the module's transmissions will be received by all modules.

e If DHis non-zero or DL is greater than OxFFFF, the transmission will only be received by the
module whose serial number equals the transmitting module's destination address (i.e.
whose SH equals the transmitting module's DH and whose SL equals its DL).

Again, this address matching will only happen between modules on the same network and

channel. If two modules are on different networks or channels, they can't communicate

regardless of their addresses.

Configuring the XBee module

You can configure the XBee module from code running on the SainSmart board or from software
on the computer. To configure it from the SainSmart board, you'll need to have the jumpers in the
Xbee position. To configure it from the computer, you'll need to have the jumpers in the USB
configuration and have removed the microncontroller from your SainSmart board.

To get the module into configuration mode, you need to send it three plus signs: +++ and there
needs to be at least one second before and after during which you send no other character to the
module. Note that this includes newlines or carriage return characters. Thus, if you're trying to
configure the module from the computer, you need to make sure your terminal software is
configured to send characters as you type them, without waiting for you to press enter. Otherwise,
it will send the plus signs immediately followed by a newline (i.e. you won't get the needed one
second delay after the +++). If you successfully enter configuration mode, the

module will send back the two characters 'OK', followed by a carriage return.

Send Command Expected Response

+++ OK<CR>

Once in configuration mode, you can send AT commands to the module. Command strings have
the form ATxx (where xx is the name of a setting). To read the current value of the setting, send
the command string followed by a carriage return. To write a new value to the setting, send the
command string, immediately followed by the new setting (with no spaces or newlines
in-between), followed by a carriage return. For example, to read the network ID of the module

(which determines which other XBee modules it will communicate with), use the 'ATID command:

Send Command Expected Response
ATID<enter> 3332<CR>

To change the network ID of the module:

Send Command Expected Response
ATID3331<enter> OK<CR>

Now, check that the setting has taken effect:

Send Command Expected Response
ATID<enter> 3331<CR>

Unless you tell the module to write the changes to non-volatile (long-term) memory, they will
only be in effect until the module loses power. To save the changes permanently (until you
explicitly modify them again), use the ATWR command:

Send Command

Expected Response

ATWR<enter>

OK<CR>

To reset the module to the factory settings, use the ATRE command:

Send Command

Expected Response

ATRE<enter>

OK<CR>

Note that like the other commands, the reset will not be permanent unless you follow it with the

ATWR command.

Here are some of the more useful parameters for configuring your XBee module.

Command Description Valid Values Default Value
ID The network ID of the | O - OXFFFF 3332
XBee module.
CH The channel of the 0xO0B - 0x1A 0XoC
XBee module.
SH and SL The serial number of 0 — OxFFFFFFFF different for each
the XBee module (SH | (for both SH and SL) module
gives the high 32 bits,
SL the low 32 bits).
Read-only.
MY The 16-bit address of | 0 - OXFFFF 0
the module.
DH and DL The destination 0 — OXFFFFFFFF 0 (for both DH and DL)
address for wireless (for both DH and DL)
communication (DH is
the high 32 bits, DL
the low 32).
BD The baud rate used 0 (1200 bps) 3 (9600 baud)

for serial
communication with
the Arduino board or
computer.

1 (2400 bps)

2 (4800 bps)

3 (9600 bps)

4 (19200 bps)
5 (38400 bps)
6 (57600 bps)
7 (115200 bps)

Note: although the valid and default values in the table above are written with a prefix of "0x" (to

indicate that they are hexadecimal numbers), the module will not include the "0x" when reporting

the value of a parameter, and you should omit it when setting values.

Here are a couple more useful commands for configuring the Xbee module (you'll need to

prepend AT to these too).

Command

Description

RE

Restore factory default settings (note that like
parameter changes, this is not permanent
unless followed by the WR command).

WR Write newly configured parameter values to
non-volatile (long-term) storage. Otherwise,
they will only last until the module loses
power.

CN Exit command mode now. (If you don't send
any commands to the module for a few
seconds, command mode will timeout and exit
even without a CN command.)

APl mode

As an alternative to Transparent Operation, API (Application Programming Interface) Operations
are available. APl operation requires that communication with the module be done through a
structured interface (data is communicated in frames in a defined order). The API specifies how
commands, command responses and module status messages are sent and received from the
module using a UART Data Frame.

Read the manual if you are going to use the APl mode.

Jumper setting

The XBee shield has two jumpers (the small removable plastic sleeves that each fit onto two of the
three pins labelled Xbee/USB). These determine how the XBee's serial communication connects to
the serial communication between the microcontroller (ATmega8 or ATmegal68) and FTDI USB-to-
serial chip on the SainSmart board.

With the jumpers in the XBee position (i.e. on the two pins towards the interior of the board), the
DOUT pin of the XBee module is connected to the RX pin of the microcontroller; and DIN is
connected to TX. Note that the RX and TX pins of the microcontroller are still connected to the TX
and RX pins (respectively) of the FTDI chip - data sent from the microcontroller will be
transmitted to the computer via USB as well as being sent wirelessly by the XBee module. The
microcontroller, however, will only be able to receive data from the XBee module, not over USB
from the computer.

With the jumpers in the USB position (i.e. on the two pins nearest the edge of the board), the
DOUT pin the XBee module is connected to the RX pin of the FTDI chip, and DIN on the XBee
module is connected to the TX pin of the FTDI chip. This means that the XBee module can
communicate directly with the computer - however, this only works if the microcontroller has
been removed from the SainSmart board. If the microcontroller is left in the SainSmart board, it
will be able to talk to the computer normally via USB, but neither the computer nor the
microcontroller will be able to talk to the XBee module.

Using Series 2 ZB XBee's

Series 2 XBee's (ZigBee protocol) are quite different to 802.15.4 ones.

ZigBee networks are called personal area networks or PANs. Each network is defined with a
unique PAN identifier (PAN ID). XBee ZB supports both a 64-bit (extended) PAN ID and a 16-bit
PAN ID.

The 16-bit PAN ID is used in all data transmissions. The 64-bit PAN ID is used during joining, and
to resolve 16-bit PAN ID conflicts that may occur.
ZigBee defines three different device types: coordinator, router, and end devices.

; ‘ I Coordinator d

Router

End Device ¢ =

Coordinator

Selects a channel and PAN ID (both 64-bit and 16-bit) to start the network

Can allow routers and end devices to join the network

Can assist in routing data

Cannot sleep--should be mains powered.
Router

Must join a ZigBee PAN before it can transmit, receive, or route data

After joining, can allow routers and end devices to join the network

After joining, can assist in routing data

Cannot sleep--should be mains powered.
End device

Must join a ZigBee PAN before it can transmit or receive data

Cannot allow devices to join the network

Must always transmit and receive RF data through its parent. Cannot route data.

Can enter low power modes to conserve power and can be battery-powered.
In ZigBee networks, the coordinator must select a PAN ID (64-bit and 16-bit) and channel to start
a network. After that, it behaves essentially like a router. The coordinator and routers can allow
other devices to join the network and can route data.
After an end device joins a router or coordinator, it must be able to transmit or receive RF data
through that router or coordinator. The router or coordinator that allowed an end device to join
becomes the "parent" of the end device. Since the end device can sleep, the parent must be able
to buffer or retain incoming data packets destined for the end device until the end device is able

to wake and receive the data.

Chapter22 MPU6050 Sensor

What’s MPU6050 Sensor?

Description

Key Features

Model: GY-521

Color: Blue

Material: PCB + Plastic + copper

Chip: MPU-6050

Power supply: 3~5V

Communication mode: standard [IC communication protocol
Chip built-in 16bit AD converter, 16bit data output
Gyroscopes range: +/- 250 500 1000 2000 degree/sec
Acceleration range: +/- 2g, +/- 4g, +/- 8g, +/- 16g

Immersion Gold plating PCB, machine welding process to ensure quality
Pin pitch: 2.54mm

Great for DIY projects

Packing list: 1 x Module 2 x Pins

Specification

sDimensions (cm): 2.1 x 1.6 x 0.3

Weight (kg): 0.005

If you need more information about MPU6050, visit:

htt%:/(eckstein—shop.de/GY—521—M PU-6050-3-Axis-Beschleunigungssensor-Accelerometer-Gyro-
module

Example code

o This code is without the algorithm, so the result is just raw data!

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in 12Cdev.h
#include "Wire.h"

// 12Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project

#include "12Cdev.h"

#include "MPU6050.h"

// class default 12C address is 0x68

// specific 12C addresses may be passed as a parameter here
// ADO low = 0x68 (default for InvenSense evaluation board)
// ADO high = 0x69

MPU6050 accelgyro;

intl6_t ax, ay, az;
intl6_t gx, gy, gz;

#define LED_PIN 13
bool blinkState = false;

void setup() {

// join 12C bus (12Cdev library doesn't do this automatically)
Wire.begin();

// initialize serial communication

// (38400 chosen because it works as well at 8MHz as it does at 16MHz, but
// it's really up to you depending on your project)

Serial.begin(38400);

// initialize device

Serial.printIn("Initializing 12C devices...");

accelgyro.initialize();

// verify connection

Serial.printIn("Testing device connections...");

Serial.printin(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050
connection failed");

// configure Arduino LED for

pinMode(LED_PIN, OUTPUT);

void loop() {
// read raw accel/gyro measurements from device
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

// these methods (and a few others) are also available
//accelgyro.getAcceleration(&ax, &ay, &az);
//accelgyro.getRotation(&gx, &gy, &gz);

// display tab-separated accel/gyro x/y/z values
Serial.print("a/g:\t");
Serial.print(ax);
Serial.print("\t");
Serial.print(ay);
Serial.print("\t");
Serial.print(az);
Serial.print("\t");
Serial.print(gx);
Serial.print("\t");
Serial.print(gy);
Serial.print("\t");
Serial.printin(gz);

// blink LED to indicate activity
blinkState = !blinkState;
digitalWrite(LED_PIN, blinkState);

e Thisis the code with algorithm.

#include "Wire.h"
#include "12Cdev.h"
#include "MPU6050.h"MPU6050 accelgyro;

intl6_t ax, ay, az;
intl6_t gx, gy, gz;

bool blinkState = false;

void setup()

{ Wire.begin();
Serial.begin(38400);

accelgyro.initialize();

}
void loop() {

accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
Serial.print("a/g:\t");
Serial.print(ax/16384);
Serial.print("\t");
Serial.print(ay/16384);
Serial.print("\t");
Serial.print(az/16384);
Serial.print("\t");
Serial.print(gx/131);
Serial.print("\t");
Serial.print(gy/131);
Serial.print("\t");
Serial.printin(gz/131);
blinkState = !blinkState;

Chapter23 Keypad

What’s keypad?

8P DuPont head, pitch 2.54mm, can be inserted in the Pin connection circuit;

Feature.

Peel off the white sticker on the back of the keyboard can be securely affixed to the surface of the
chassis

Experiment component

e Relay:1
e LED:2

e UNOR3:1
o Keypad:1

o Breadboard & Jumper wires
e USBcable:1

Wiring

Wiring up the parts is easier than it might seam. Note that DO and D1 are used for serial
programing. D13 has a resister wired into it so not good for the relay signaling. Analog pins with
LEDs is a bit of a hack for some more 1/0.

===
=l [=] (=] (=]

(=] (=] =]
HEEE]

Bz
ad,

<
@

= .

“HIAS
----------If.u..“_h.ﬁa..-ﬂl-
---------- . e W
---------- ¥ -
.......... b P4
llllllllll] ..l.!.‘

llllllllll
llllllllll

ttttttttt

g
A

1
wgl

iiiiiiiiii
!!!!!!!!!!
llllllllll

llllllllll L o
----- w8 ‘ (- | 4 & W I0AE Ol
i P SR W e W

L]

LEDs
Red LED positive connected to Arduino Uno Analog AO
Green LED positive connected to Arduino Uno Analog Al
Ground legs connected to Arduino Ground
Relays
VCC connected to Arduino 5v
IN1 connected to Arduino D2
IN2 connected to Arduino D3
IN3 connected to Arduino D4
IN4 connected to Arduino D5
Ground connected to Arduino Ground
Keypad
Connected to Arduino D6-D13
Power
9V battery connected to Arduino Ground and VIN when not connected to computer USB

Example code

/* Locked Relays

*

* An SainSmart Uno, Keypad, Relays and some LEDs for fun
*

* Using a password to enable the relays, then selective
*

toggle the relays by key.

*

* Needed libraries

* http://arduino.cc/playground/uploads/Code/Keypad.zip

* http://arduino.cc/playground/uploads/Code/Password.zip
*/

#include <Keypad.h>/*
#include <Password.h>/*

int relayl = 2;
int relay2 = 3;
int relay3 = 4;
int relay4 = 5;
int locked = 1;

int passinput = 0;
int lockedled = 14;
int unlockedled = 15;

long ledflashvar = 0;
long ledflashtime = 300;

http://arduino.cc/playground/uploads/Code/Keypad.zip
http://arduino.cc/playground/uploads/Code/Password.zip

const byte ROWS = 4;

const byte COLS = 4;

char keys[ROWS][COLS] = {{'1','2",'3",'A'},{'4",'5",'6",'B'},{'7','8",'9",'C'},{"*','0",'#",'D'}};
byte rowPins[ROWS] = {13, 12, 11, 10};

byte colPins[COLS] = {9, 8, 7, 6};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);
Password password = Password("0000");

void setup(){ Serial.begin(9600);
pinMode(relayl, OUTPUT);
digitalWrite(relayl, 255);
pinMode(relay2, OUTPUT);
digitalWrite(relay2, 255);
pinMode(relay3, OUTPUT);
digitalWrite(relay3, 255);
pinMode(relay4, OUTPUT);
digitalWrite(relay4, 255);
pinMode(lockedled, OUTPUT);
digitalWrite(lockedled, 255);
pinMode(unlockedled, OUTPUT);
digitalWrite(unlockedled, 0);

void loop(){
char key = keypad.getKey();
if(locked){
if(passinput){
unsigned long ledcurrentvar = millis();
if(ledcurrentvar - ledflashvar > ledflashtime)
{ ledflashvar = ledcurrentvar;
digitalWrite(lockedled, !digitalRead(lockedled));

}

else{
digitalWrite(lockedled, 255);
}
digitalWrite(unlockedled, 0);
}
if (key !=
NO_KEY){ Serial.printin(
key);
password.append(key);

passinput = 1;
if(key ==
"*"){ password.res
et(); passinput = 0;
locked =1;
digitalWrite(relayl, HIGH);
digitalWrite(relay2, HIGH);
digitalWrite(relay3, HIGH);
digitalWrite(relay4, HIGH);
1
if(password.evaluate())
{ locked = llocked;
password.reset();
passinput = 0;
}
if(!locked) { passinput = 0;
digitalWrite(lockedled, 0);
digitalWrite(unlockedled, 255);
switch (key) {
case 'A":
digitalWrite(relay1, !digitalRead(relayl));
break;
case 'B":
digitalWrite(relay2, !digitalRead(relay2));
break;
case 'C":
digitalWrite(relay3, !digitalRead(relay3));
break;
case 'D":
digitalWrite(relay4, !digitalRead(relay4));
break;

}

password.reset();

